"

12.2 Digestive Systems

Mary Ann Clark; Jung Choi; and Matthew Douglas

Learning Objectives

By the end of this section, you will be able to do the following:

  • Explain the processes of digestion and absorption
  • Explain the specialized functions of the organs involved in processing food in the body
  • Describe the ways in which organs work together to digest food and absorb nutrients

Animals obtain their nutrition from the consumption of other organisms. Depending on their diet, animals can be classified into the following categories: plant eaters (herbivores), meat eaters (carnivores), and those that eat both plants and animals (omnivores). The nutrients and macromolecules present in food are not immediately accessible to the cells. There are a number of processes that modify food within the animal body in order to make the nutrients and organic molecules accessible for cellular function. As animals evolved in complexity of form and function, their digestive systems have also evolved to accommodate their various dietary needs.

Herbivores, Omnivores, and Carnivores

Herbivores are animals whose primary food source is plant-based. Examples of herbivores, as shown in Figure 12.2 include vertebrates like deer, koalas, and some bird species, as well as invertebrates such as crickets and caterpillars. These animals have evolved digestive systems capable of handling large amounts of plant material. Herbivores can be further classified into frugivores (fruit-eaters), granivores (seed eaters), nectivores (nectar feeders), and folivores (leaf eaters).

Left photo shows a buck with antlers. Right photo shows a black, yellow, and white striped caterpillar eating a leaf.
Figure 12.2 Herbivores, like this (a) mule deer and (b) monarch caterpillar, eat primarily plant material. (credit a: modification of work by Bill Ebbesen; credit b: modification of work by Doug Bowman)

Carnivores are animals that eat other animals. The word carnivore is derived from Latin and literally means “meat eater.” Wild cats such as lions, shown in Figure 12.3 a and tigers are examples of vertebrate carnivores, as are snakes and sharks, while invertebrate carnivores include sea stars, spiders, and ladybugs, shown in Figure 12.3b. Obligate carnivores are those that rely entirely on animal flesh to obtain their nutrients; examples of obligate carnivores are members of the cat family, such as lions and cheetahs. Facultative carnivores are those that also eat non-animal food in addition to animal food. Note that there is no clear line that differentiates facultative carnivores from omnivores; dogs would be considered facultative carnivores.

The first photo shows a lion. The next photo shows a ladybug.
Figure 12.3 Carnivores like the (a) lion eat primarily meat. The (b) ladybug is also a carnivore that consumes small insects called aphids. (credit a: modification of work by Kevin Pluck; credit b: modification of work by Jon Sullivan)

Omnivores are animals that eat both plant- and animal-derived food. In Latin, omnivore means to eat everything. Humans, bears (shown in Figure 12.4a), and chickens are example of vertebrate omnivores; invertebrate omnivores include cockroaches and crayfish (shown in Figure 12.4b).

The first photo shows a bear. The next photo shows a crayfish.
Figure 12.4 Omnivores like the (a) bear and (b) crayfish eat both plant and animal based food. (credit a: modification of work by Dave Menke; credit b: modification of work by Jon Sullivan)

Parts of the Vertebrate Digestive System

The vertebrate digestive system is designed to facilitate the transformation of food matter into the nutrient components that sustain organisms.

Oral Cavity

The oral cavity, or mouth, is the point of entry of food into the digestive system, illustrated in Figure 12.5. The food consumed is broken into smaller particles by mastication, the chewing action of the teeth. All mammals have teeth and can chew their food.

The extensive chemical process of digestion begins in the mouth. As food is being chewed, saliva, produced by the salivary glands, mixes with the food. Saliva is a watery substance produced in the mouths of many animals. There are three major glands that secrete saliva—the parotid, the submandibular, and the sublingual. Saliva contains mucus that moistens food and buffers the pH of the food. Saliva also contains immunoglobulins and lysozymes, which have antibacterial action to reduce tooth decay by inhibiting growth of some bacteria. Saliva also contains an enzyme called salivary amylase that begins the process of converting starches in the food into a disaccharide called maltose. Another enzyme called lipase is produced by the cells in the tongue. Lipases are a class of enzymes that can breakdown triglycerides. The lingual lipase begins the breakdown of fat components in the food. The chewing and wetting action provided by the teeth and saliva prepare the food into a mass called the bolus for swallowing. The tongue helps in swallowing—moving the bolus from the mouth into the pharynx. The pharynx opens to two passageways: the trachea, which leads to the lungs, and the esophagus, which leads to the stomach. The trachea has an opening called the glottis, which is covered by a cartilaginous flap called the epiglottis. When swallowing, the epiglottis closes the glottis and food passes into the esophagus and not the trachea. This arrangement allows food to be kept out of the trachea.

Illustration A shows the parts of the human oral cavity. The tongue rests in the lower part of the mouth. The flap that hangs from the back of the mouth is the uvula. The airway behind the uvula, called the pharynx, extends up to the nostrils and down to the esophagus, which begins in the neck. Illustration B shows the two salivary glands, which are located beneath the tongue, the sublingual and the submandibular. A third salivary gland, the parotid, is located behind the pharynx.
Figure 12.5 Digestion of food begins in the (a) oral cavity. Food is masticated by teeth and moistened by saliva secreted from the (b) salivary glands. Enzymes in the saliva begin to digest starches and fats. With the help of the tongue, the resulting bolus is moved into the esophagus by swallowing. (credit: modification of work by the National Cancer Institute)

Esophagus

The esophagus is a tubular organ that connects the mouth to the stomach. The chewed and softened food passes through the esophagus after being swallowed. The smooth muscles of the esophagus undergo a series of wave like movements called peristalsis that push the food toward the stomach, as illustrated in Figure 12.6. The peristalsis wave is unidirectional—it moves food from the mouth to the stomach, and reverse movement is not possible. The peristaltic movement of the esophagus is an involuntary reflex; it takes place in response to the act of swallowing.

Photo shows food moving down the esophagus, which is a muscular tube. Muscles constrict behind the food. The constriction moves down, pushing the food ahead of it, from the mouth to the stomach.
Figure 12.6 The esophagus transfers food from the mouth to the stomach through peristaltic movements.

A ring-like muscle called a sphincter forms valves in the digestive system. The gastro-esophageal sphincter is located at the stomach end of the esophagus. In response to swallowing and the pressure exerted by the bolus of food, this sphincter opens, and the bolus enters the stomach. When there is no swallowing action, this sphincter is shut and prevents the contents of the stomach from traveling up the esophagus. Many animals have a true sphincter; however, in humans, there is no true sphincter, but the esophagus remains closed when there is no swallowing action. Acid reflux or “heartburn” occurs when the acidic digestive juices escape into the esophagus.

Stomach

A large part of digestion occurs in the stomach, shown in Figure 12.7. The stomach is a saclike organ that secretes gastric digestive juices. The pH in the stomach is between 1.5 and 2.5. This highly acidic environment is required for the chemical breakdown of food and the extraction of nutrients. When empty, the stomach is a rather small organ; however, it can expand to up to 20 times its resting size when filled with food. This characteristic is particularly useful for animals that need to eat when food is available.

Visual Connection

Illustration shows the human lower digestive system, which begins with the stomach, a sac that lies above the large intestine. The stomach empties into the small intestine, which is a long, highly folded tube. The beginning of the small intestine is called the duodenum, the long middle part is called the jejunum, and the end is called the ileum. The ileum empties into the large intestine on the right side of the body. Beneath the junction of the small and large intestine is a small pouch called the cecum. The appendix is at the bottom end of the cecum. The large intestine travels up the left side of the body, across the top of the small intestine, then down the right side of the body. These parts of the large intestine are called the ascending colon, the transverse colon and the descending colon, respectively. The large intestine empties into the rectum, which is connected to the anus. The pancreas is sandwiched between the stomach and large intestine. The liver is a triangular organ that sits above and slightly to the right of the stomach. The gallbladder is a small bulb between the liver and stomach.
Figure 12.7 The human stomach has an extremely acidic environment where most of the protein gets digested. (credit: modification of work by Mariana Ruiz Villareal)

 

The stomach is also the major site for protein digestion in animals other than ruminants. Protein digestion is mediated by an enzyme called pepsin in the stomach chamber. Pepsin is secreted by the chief cells in the stomach in an inactive form called pepsinogen. Pepsin breaks peptide bonds and cleaves proteins into smaller polypeptides; it also helps activate more pepsinogen, starting a positive feedback mechanism that generates more pepsin. Another cell type—parietal cells—secrete hydrogen and chloride ions, which combine in the lumen to form hydrochloric acid, the primary acidic component of the stomach juices. Hydrochloric acid helps to convert the inactive pepsinogen to pepsin. The highly acidic environment also kills many microorganisms in the food and, combined with the action of the enzyme pepsin, results in the hydrolysis of protein in the food. Chemical digestion is facilitated by the churning action of the stomach. Contraction and relaxation of smooth muscles mixes the stomach contents about every 20 minutes. The partially digested food and gastric juice mixture is called chyme. Chyme passes from the stomach to the small intestine. Further protein digestion takes place in the small intestine. Gastric emptying occurs within two to six hours after a meal. Only a small amount of chyme is released into the small intestine at a time. The movement of chyme from the stomach into the small intestine is regulated by the pyloric sphincter.

When digesting protein and some fats, the stomach lining must be protected from getting digested by pepsin. There are two points to consider when describing how the stomach lining is protected. First, as previously mentioned, the enzyme pepsin is synthesized in the inactive form. This protects the chief cells, because pepsinogen does not have the same enzyme functionality of pepsin. Second, the stomach has a thick mucus lining that protects the underlying tissue from the action of the digestive juices. When this mucus lining is ruptured, ulcers can form in the stomach. Ulcers are open wounds in or on an organ caused by bacteria (Helicobacter pylori) when the mucus lining is ruptured and fails to reform.

Small Intestine

Chyme moves from the stomach to the small intestine. The small intestine is the organ where the digestion of protein, fats, and carbohydrates is completed. The small intestine is a long tube-like organ with a highly folded surface containing finger-like projections called the villi. The apical surface of each villus has many microscopic projections called microvilli. These structures, illustrated in Figure 12.8, are lined with epithelial cells on the luminal side and allow for the nutrients to be absorbed from the digested food and absorbed into the bloodstream on the other side. The villi and microvilli, with their many folds, increase the surface area of the intestine and increase absorption efficiency of the nutrients. Absorbed nutrients in the blood are carried into the hepatic portal vein, which leads to the liver. There, the liver regulates the distribution of nutrients to the rest of the body and removes toxic substances, including drugs, alcohol, and some pathogens.

Visual Connection

Illustration shows a cross section of the small intestine, the lumen, or inside of which has many fingerlike projections called villi. Muscle layers wrap around the outside of the intestine, and blood vessels interact with the muscle layer. A blowup shows that capillaries and lymphatic vessels travel up inside the villi. The surface of each villus is covered with hairline microvilli.
Figure 12.8 Villi are folds on the small intestine lining that increase the surface area to facilitate the absorption of nutrients.

The human small intestine is over 6m long and is divided into three parts: the duodenum, the jejunum, and the ileum. The “C-shaped,” fixed part of the small intestine is called the duodenum and is shown in Figure 12.7. The duodenum is separated from the stomach by the pyloric sphincter which opens to allow chyme to move from the stomach to the duodenum. In the duodenum, chyme is mixed with pancreatic juices in an alkaline solution rich in bicarbonate that neutralizes the acidity of chyme and acts as a buffer. Pancreatic juices also contain several digestive enzymes. Digestive juices from the pancreas, liver, and gallbladder, as well as from gland cells of the intestinal wall itself, enter the duodenum. Bile is produced in the liver and stored and concentrated in the gallbladder. Bile contains bile salts which emulsify lipids while the pancreas produces enzymes that catabolize starches, disaccharides, proteins, and fats. These digestive juices breakdown the food particles in the chyme into glucose, triglycerides, and amino acids. Some chemical digestion of food takes place in the duodenum. Absorption of fatty acids also takes place in the duodenum.

The second part of the small intestine is called the jejunum, shown in Figure 12.7. Here, hydrolysis of nutrients is continued while most of the carbohydrates and amino acids are absorbed through the intestinal lining. The bulk of chemical digestion and nutrient absorption occurs in the jejunum.

The ileum, also illustrated in Figure 12.7 is the last part of the small intestine and here the bile salts and vitamins are absorbed into the bloodstream. The undigested food is sent to the colon from the ileum via peristaltic movements of the muscle. The ileum ends and the large intestine begins at the ileocecal valve. The vermiform, “worm-like,” appendix is located at the ileocecal valve. The appendix of humans secretes no enzymes and has an insignificant role in immunity.

Large Intestine

The large intestine, illustrated in Figure 12.9, reabsorbs the water from the undigested food material and processes the waste material. The human large intestine is much smaller in length compared to the small intestine but larger in diameter. It has three parts: the cecum, the colon, and the rectum. The cecum joins the ileum to the colon and is the receiving pouch for the waste matter. The colon is home to many bacteria or “intestinal flora” that aid in the digestive processes. The colon can be divided into four regions, the ascending colon, the transverse colon, the descending colon, and the sigmoid colon. The main functions of the colon are to extract the water and mineral salts from undigested food, and to store waste material. Carnivorous mammals have a shorter large intestine compared to herbivorous mammals due to their diet.

Illustration shows the structure of the large intestine, which begins with the ascending colon. Below the ascending colon is the cecum. The vermiform appendix is a small projection at the bottom of the cecum. The ascending colon travels up the right side of the body, then turns into the transverse colon. On the left side of the body the large intestine turns again, into the descending colon. At the bottom, the descending colon curves up; this part of the intestine is called the sigmoid colon. The sigmoid colon empties into the rectum. The rectum travels straight down, to the anus.
Figure 12.9 The large intestine reabsorbs water from undigested food and stores waste material until it is eliminated.

Rectum and Anus

The rectum is the terminal end of the large intestine, as shown in Figure 12.9. The primary role of the rectum is to store the feces until defecation. The feces are propelled using peristaltic movements during elimination. The anus is an opening at the far-end of the digestive tract and is the exit point for the waste material. Two sphincters between the rectum and anus control elimination: the inner sphincter is involuntary and the outer sphincter is voluntary.

Accessory Organs

The organs discussed above are the organs of the digestive tract through which food passes. Accessory organs are organs that add secretions (enzymes) that catabolize food into nutrients. Accessory organs include salivary glands, the liver, the pancreas, and the gallbladder. The liver, pancreas, and gallbladder are regulated by hormones in response to the food consumed.

The liver is the largest internal organ in humans and it plays a very important role in digestion of fats and detoxifying blood. The liver produces bile, a digestive juice that is required for the breakdown of fatty components of the food in the duodenum. The liver also processes the vitamins and fats and synthesizes many plasma proteins.

The pancreas is another important gland that secretes digestive juices. The chyme produced from the stomach is highly acidic in nature; the pancreatic juices contain high levels of bicarbonate, an alkali that neutralizes the acidic chyme. Additionally, the pancreatic juices contain a large variety of enzymes that are required for the digestion of protein and carbohydrates.

The gallbladder is a small organ that aids the liver by storing bile and concentrating bile salts. When chyme containing fatty acids enters the duodenum, the bile is secreted from the gallbladder into the duodenum.

Section Summary

Different animals have evolved different types of digestive systems specialized to meet their dietary needs.  Processing food involves ingestion (eating), digestion (mechanical and enzymatic breakdown of large molecules), absorption (cellular uptake of nutrients), and elimination (removal of undigested waste as feces).

Many organs work together to digest food and absorb nutrients. The mouth is the point of ingestion and the location where both mechanical and chemical breakdown of food begins. Saliva contains an enzyme called amylase that breaks down carbohydrates. The food bolus travels through the esophagus by peristaltic movements to the stomach. The stomach has an extremely acidic environment. An enzyme called pepsin digests protein in the stomach. Further digestion and absorption take place in the small intestine. The large intestine reabsorbs water from the undigested food and stores waste until elimination.

Review Questions

 

Critical Thinking Questions

  1. What is the role of the accessory organs in digestion?
  2. Explain how the villi and microvilli aid in absorption.
  3. Name two components of the digestive system that perform mechanical digestion. Describe how mechanical digestion contributes to acquiring nutrients from food.

Glossary

alimentary canal
tubular digestive system with a mouth and anus
anus
exit point for waste material
bile
digestive juice produced by the liver; important for digestion of lipids
bolus
mass of food resulting from chewing action and wetting by saliva
carnivore
animal that consumes animal flesh
chyme
mixture of partially digested food and stomach juices
duodenum
first part of the small intestine where a large part of digestion of carbohydrates and fats occurs
esophagus
tubular organ that connects the mouth to the stomach
gallbladder
organ that stores and concentrates bile
herbivore
animal that consumes a strictly plant diet
ileum
last part of the small intestine; connects the small intestine to the large intestine; important for absorption of B-12
jejunum
second part of the small intestine
large intestine
digestive system organ that reabsorbs water from undigested material and processes waste matter
lipase
enzyme that chemically breaks down lipids
liver
organ that produces bile for digestion and processes vitamins and lipids
omnivore
animal that consumes both plants and animals
pancreas
gland that secretes digestive juices
pepsin
enzyme found in the stomach whose main role is protein digestion
pepsinogen
inactive form of pepsin
peristalsis
wave-like movements of muscle tissue
rectum
area of the body where feces is stored until elimination
roughage
component of food that is low in energy and high in fiber
salivary amylase
enzyme found in saliva, which converts carbohydrates to maltose
small intestine
organ where digestion of protein, fats, and carbohydrates is completed
sphincter
band of muscle that controls movement of materials throughout the digestive tract
stomach
saclike organ containing acidic digestive juices
villi
folds on the inner surface of the small intestine whose role is to increase absorption area

Chapter 34 in OpenStax Concepts of Biology 2E

License

Icon for the Creative Commons Attribution 4.0 International License

NSCC Concepts of Biology II BIOL 1047 Copyright © 2022 by Nova Scotia Community College is licensed under a Creative Commons Attribution 4.0 International License, except where otherwise noted.