[latexpage]

This appendix is broken into several tables.

Important Constants1
Symbol Meaning Best Value Approximate Value
\(c\) Speed of light in vacuum \(2\text{.}\text{99792458}\phantom{\rule{0.15em}{0ex}}×\phantom{\rule{0.15em}{0ex}}{\text{10}}^{8}\phantom{\rule{0.15em}{0ex}}\text{m}/\text{s}\) \(3\text{.}\text{00}\phantom{\rule{0.15em}{0ex}}×\phantom{\rule{0.15em}{0ex}}{\text{10}}^{8}\phantom{\rule{0.15em}{0ex}}\text{m}/\text{s}\)
\(G\) Gravitational constant \(6\text{.}\text{67408}\left(\text{31}\right)\phantom{\rule{0.15em}{0ex}}×\phantom{\rule{0.15em}{0ex}}{\text{10}}^{-\text{11}}\phantom{\rule{0.15em}{0ex}}\text{N}\cdot {\text{m}}^{2}/{\text{kg}}^{2}\) \(6\text{.}\text{67}\phantom{\rule{0.15em}{0ex}}×\phantom{\rule{0.15em}{0ex}}{\text{10}}^{-\text{11}}\phantom{\rule{0.15em}{0ex}}\text{N}\cdot {\text{m}}^{2}/{\text{kg}}^{2}\)
\({N}_{A}\) Avogadro’s number \(6.02214076\phantom{\rule{0.15em}{0ex}}×\phantom{\rule{0.15em}{0ex}}{\text{10}}^{\text{23}}\) \(6\text{.}\text{02}\phantom{\rule{0.15em}{0ex}}×\phantom{\rule{0.15em}{0ex}}{\text{10}}^{\text{23}}\)
\(k\) Boltzmann’s constant \(1.380649\phantom{\rule{0.15em}{0ex}}×\phantom{\rule{0.15em}{0ex}}{\text{10}}^{-\text{23}}\phantom{\rule{0.15em}{0ex}}\text{J}/\text{K}\) \(1\text{.}\text{38}\phantom{\rule{0.15em}{0ex}}×\phantom{\rule{0.15em}{0ex}}{\text{10}}^{-\text{23}}\phantom{\rule{0.15em}{0ex}}\text{J}/\text{K}\)
\(R\) Gas constant \(8\text{.}\text{3144621}\left(\text{75}\right)\phantom{\rule{0.15em}{0ex}}\text{J}/\text{mol}\cdot \text{K}\) \(8\text{.}\text{31}\phantom{\rule{0.15em}{0ex}}\text{J}/\text{mol}\cdot \text{K}=1\text{.}\text{99}\phantom{\rule{0.20em}{0ex}}\text{cal}/\text{mol}\cdot \text{K}=0\text{.}\text{0821}\text{atm}\cdot \text{L}/\text{mol}\cdot \text{K}\)
\(\text{σ}\) Stefan-Boltzmann constant \(5\text{.}\text{670373}\left(\text{21}\right)\phantom{\rule{0.15em}{0ex}}×\phantom{\rule{0.15em}{0ex}}{\text{10}}^{-8}\phantom{\rule{0.15em}{0ex}}\text{W}/{\text{m}}^{2}\cdot \text{K}\) \(5\text{.}\text{67}\phantom{\rule{0.15em}{0ex}}×\phantom{\rule{0.15em}{0ex}}{\text{10}}^{-8}\phantom{\rule{0.15em}{0ex}}\text{W}/{\text{m}}^{2}\cdot \text{K}\)
\(k\) Coulomb force constant \(8\text{.}\text{987551788}\text{.}\text{.}\text{.}\phantom{\rule{0.15em}{0ex}}×\phantom{\rule{0.15em}{0ex}}{\text{10}}^{9}\phantom{\rule{0.15em}{0ex}}\text{N}\cdot {\text{m}}^{2}/{\text{C}}^{2}\) \(8.99\phantom{\rule{0.15em}{0ex}}×\phantom{\rule{0.15em}{0ex}}{\text{10}}^{9}\phantom{\rule{0.15em}{0ex}}\text{N}\cdot {\text{m}}^{2}/{\text{C}}^{2}\)
\({q}_{e}\) Charge on electron \(-1.602176634\phantom{\rule{0.15em}{0ex}}×\phantom{\rule{0.15em}{0ex}}{\text{10}}^{-\text{19}}\phantom{\rule{0.15em}{0ex}}\text{C}\) \(-1\text{.}\text{60}\phantom{\rule{0.15em}{0ex}}×\phantom{\rule{0.15em}{0ex}}{\text{10}}^{-\text{19}}\phantom{\rule{0.15em}{0ex}}\text{C}\)
\({\text{ε}}_{0}\) Permittivity of free space \(8\text{.}\text{854187817}\text{.}\text{.}\text{.}\phantom{\rule{0.15em}{0ex}}×\phantom{\rule{0.15em}{0ex}}{\text{10}}^{-\text{12}}\phantom{\rule{0.15em}{0ex}}{\text{C}}^{2}/\text{N}\cdot {\text{m}}^{2}\) \(8\text{.}\text{85}\phantom{\rule{0.15em}{0ex}}×\phantom{\rule{0.15em}{0ex}}{\text{10}}^{-\text{12}}\phantom{\rule{0.15em}{0ex}}{\text{C}}^{2}/\text{N}\cdot {\text{m}}^{2}\)
\({\text{μ}}_{0}\) Permeability of free space \(4\pi \phantom{\rule{0.15em}{0ex}}×\phantom{\rule{0.15em}{0ex}}{\text{10}}^{-7}\phantom{\rule{0.15em}{0ex}}\text{T}\cdot \text{m}/\text{A}\) \(1\text{.}\text{26}\phantom{\rule{0.15em}{0ex}}×\phantom{\rule{0.15em}{0ex}}{\text{10}}^{-6}\phantom{\rule{0.15em}{0ex}}\text{T}\cdot \text{m}/\text{A}\)
\(h\) Planck’s constant \(6.62607015\phantom{\rule{0.15em}{0ex}}×\phantom{\rule{0.15em}{0ex}}{\text{10}}^{-\text{34}}\phantom{\rule{0.15em}{0ex}}\text{J}\cdot \text{s}\) \(6\text{.}\text{63}\phantom{\rule{0.15em}{0ex}}×\phantom{\rule{0.15em}{0ex}}{\text{10}}^{-\text{34}}\phantom{\rule{0.15em}{0ex}}\text{J}\cdot \text{s}\)
Submicroscopic Masses2
Symbol Meaning Best Value Approximate Value
\({m}_{e}\) Electron mass \(9\text{.}\text{10938291}\left(\text{40}\right)×{\text{10}}^{-\text{31}}\text{kg}\) \(9\text{.}\text{11}×{\text{10}}^{-\text{31}}\text{kg}\)
\({m}_{p}\) Proton mass \(1\text{.}\text{672621777}\left(\text{74}\right)×{\text{10}}^{-\text{27}}\text{kg}\) \(1\text{.}\text{6726}×{\text{10}}^{-\text{27}}\text{kg}\)
\({m}_{n}\) Neutron mass \(1\text{.}\text{674927351}\left(\text{74}\right)×{\text{10}}^{-\text{27}}\text{kg}\) \(1\text{.}\text{6749}×{\text{10}}^{-\text{27}}\text{kg}\)
\(\text{u}\) Atomic mass unit \(1\text{.}\text{660538921}\left(\text{73}\right)×{\text{10}}^{-\text{27}}\text{kg}\) \(1\text{.}\text{6605}×{\text{10}}^{-\text{27}}\text{kg}\)
Solar System Data
Sun mass \(1\text{.}\text{99}×{\text{10}}^{\text{30}}\text{kg}\)
average radius \(6\text{.}\text{96}×{\text{10}}^{8}\text{m}\)
Earth-sun distance (average) \(1\text{.}\text{496}×{\text{10}}^{\text{11}}\text{m}\)
Earth mass \(5\text{.}\text{9736}×{\text{10}}^{\text{24}}\text{kg}\)
average radius \(6\text{.}\text{376}×{\text{10}}^{6}\text{m}\)\(\)
orbital period \(3\text{.}\text{16}×{\text{10}}^{7}\text{s}\)
Moon mass \(7\text{.}\text{35}×{\text{10}}^{\text{22}}\text{kg}\)
average radius \(1\text{.}\text{74}×{\text{10}}^{6}\text{m}\)
orbital period (average) \(2\text{.}\text{36}×{\text{10}}^{6}\text{s}\)
Earth-moon distance (average) \(3\text{.}\text{84}×{\text{10}}^{8}\text{m}\)
Metric Prefixes for Powers of Ten and Their Symbols
Prefix Symbol Value Prefix Symbol Value
tera T \({\text{10}}^{\text{12}}\) deci d \({\text{10}}^{-1}\)
giga G \({\text{10}}^{9}\) centi c \({\text{10}}^{-2}\)
mega M \({\text{10}}^{6}\) milli m \({\text{10}}^{-3}\)
kilo k \({\text{10}}^{3}\) micro \(\mu \) \({\text{10}}^{-6}\)
hecto h \({\text{10}}^{2}\) nano n \({\text{10}}^{-9}\)
deka da \({\text{10}}^{1}\) pico p \({\text{10}}^{-\text{12}}\)
\({\text{10}}^{0}\left(=1\right)\) femto f \({\text{10}}^{-\text{15}}\)
The Greek Alphabet
Alpha \(\text{Α}\) \(\alpha \) Eta \(\text{Η}\) \(\eta \) Nu \(\text{Ν}\) \(\nu \) Tau \(\text{Τ}\) \(\tau \)
Beta \(\text{Β}\) \(\beta \) Theta \(\text{Θ}\) \(\theta \) Xi \(\text{Ξ}\) \(\xi \) Upsilon \(\text{Υ}\) \(\upsilon \)
Gamma \(\text{Γ}\) \(\gamma \) Iota \(\text{Ι}\) \(\iota \) Omicron \(\text{Ο}\) \(ο\) Phi \(\text{Φ}\) \(\varphi \)
Delta \(\text{Δ}\) \(\delta \) Kappa \(\text{Κ}\) \(\kappa \) Pi \(\text{Π}\) \(\pi \) Chi \(\text{Χ}\) \(\chi \)
Epsilon \(\text{Ε}\) \(\epsilon \) Lambda \(\text{Λ}\) \(\lambda \) Rho \(\text{Ρ}\) \(\rho \) Psi \(\text{Ψ}\) \(\psi \)
Zeta \(\text{Ζ}\) \(\zeta \) Mu \(\text{Μ}\) \(\mu \) Sigma \(\text{Σ}\) \(\sigma \) Omega \(\Omega \) \(\omega \)
SI Units
Entity Abbreviation Name
Fundamental units Length m meter
Mass kg kilogram
Time s second
Current A ampere
Supplementary unit Angle rad radian
Derived units Force \(\text{N}=\text{kg}\cdot \text{m}/{\text{s}}^{2}\) newton
Energy \(\text{J}=\text{kg}\cdot {\text{m}}^{2}/{\text{s}}^{2}\) joule
Power \(\text{W}=\text{J}/\text{s}\) watt
Pressure \(\text{Pa}=\text{N}/{\text{m}}^{2}\) pascal
Frequency \(\text{Hz}=1/\text{s}\) hertz
Electronic potential \(\text{V}=\text{J}/\text{C}\) volt
Capacitance \(\text{F}=\text{C}/\text{V}\) farad
Charge \(\text{C}=\text{s}\cdot \text{A}\) coulomb
Resistance \(\Omega =\text{V}/\text{A}\) ohm
Magnetic field \(\text{T}=\text{N}/\left(\text{A}\cdot \text{m}\right)\) tesla
Nuclear decay rate \(\text{Bq}=1/\text{s}\) becquerel
Selected British Units
Length \(1\phantom{\rule{0.20em}{0ex}}\text{inch}\phantom{\rule{0.20em}{0ex}}\left(\text{in}\text{.}\right)=2\text{.}\text{54}\phantom{\rule{0.20em}{0ex}}\text{cm}\phantom{\rule{0.20em}{0ex}}\left(\text{exactly}\right)\)
\(1\phantom{\rule{0.20em}{0ex}}\text{foot}\phantom{\rule{0.20em}{0ex}}\left(\text{ft}\right)=0\text{.}\text{3048}\phantom{\rule{0.20em}{0ex}}\text{m}\)
\(1\phantom{\rule{0.20em}{0ex}}\text{mile}\phantom{\rule{0.20em}{0ex}}\left(\text{mi}\right)=1\text{.}\text{609}\phantom{\rule{0.20em}{0ex}}\text{km}\)
Force \(1\phantom{\rule{0.20em}{0ex}}\text{pound}\phantom{\rule{0.20em}{0ex}}\left(\text{lb}\right)=4\text{.}\text{448}\phantom{\rule{0.20em}{0ex}}\text{N}\)
Energy \(1\phantom{\rule{0.20em}{0ex}}\text{British thermal unit}\phantom{\rule{0.20em}{0ex}}\left(\text{Btu}\right)=1\text{.}\text{055}×{\text{10}}^{3}\phantom{\rule{0.20em}{0ex}}\text{J}\)
Power \(1\phantom{\rule{0.20em}{0ex}}\text{horsepower}\phantom{\rule{0.20em}{0ex}}\left(\text{hp}\right)=\text{746}\phantom{\rule{0.20em}{0ex}}\text{W}\)
Pressure \(1\phantom{\rule{0.20em}{0ex}}\text{lb}/{\text{in}}^{2}=6\text{.}\text{895}×{\text{10}}^{3}\phantom{\rule{0.20em}{0ex}}\text{Pa}\)
Other Units
Length \(1\phantom{\rule{0.20em}{0ex}}\text{light year}\phantom{\rule{0.20em}{0ex}}\left(\text{ly}\right)=9\text{.}\text{46}×{\text{10}}^{\text{15}}\phantom{\rule{0.20em}{0ex}}\text{m}\)
\(1\phantom{\rule{0.20em}{0ex}}\text{astronomical unit}\phantom{\rule{0.20em}{0ex}}\left(\text{au}\right)=1\text{.}\text{50}×{\text{10}}^{\text{11}}\phantom{\rule{0.20em}{0ex}}\text{m}\)
\(1\phantom{\rule{0.20em}{0ex}}\text{nautical mile}=1\text{.}\text{852}\phantom{\rule{0.20em}{0ex}}\text{km}\)
\(1\phantom{\rule{0.20em}{0ex}}\text{angstrom}\left(\text{Å}\right)\phantom{\rule{0.20em}{0ex}}={\text{10}}^{-\text{10}}\phantom{\rule{0.20em}{0ex}}\text{m}\)
Area \(1\phantom{\rule{0.20em}{0ex}}\text{acre}\phantom{\rule{0.20em}{0ex}}\left(\text{ac}\right)=4\text{.}\text{05}×{\text{10}}^{3}\phantom{\rule{0.20em}{0ex}}{\text{m}}^{2}\)
\(1\phantom{\rule{0.20em}{0ex}}\text{square foot}\phantom{\rule{0.20em}{0ex}}\left({\text{ft}}^{2}\right)=9\text{.}\text{29}×{\text{10}}^{-2}\phantom{\rule{0.20em}{0ex}}{\text{m}}^{2}\)
\(1\phantom{\rule{0.20em}{0ex}}\text{barn}\phantom{\rule{0.20em}{0ex}}\left(b\right)={\text{10}}^{-\text{28}}\phantom{\rule{0.20em}{0ex}}{\text{m}}^{2}\)
Volume \(1\phantom{\rule{0.20em}{0ex}}\text{liter}\phantom{\rule{0.20em}{0ex}}\left(L\right)={\text{10}}^{-3}\phantom{\rule{0.20em}{0ex}}{\text{m}}^{3}\)
\(1\phantom{\rule{0.20em}{0ex}}\text{U.S. gallon}\phantom{\rule{0.20em}{0ex}}\left(\text{gal}\right)=3\text{.}\text{785}×{\text{10}}^{-3}\phantom{\rule{0.20em}{0ex}}{\text{m}}^{3}\)
Mass \(1\phantom{\rule{0.20em}{0ex}}\text{solar mass}\phantom{\rule{0.20em}{0ex}}=1\text{.}\text{99}×{\text{10}}^{\text{30}}\phantom{\rule{0.20em}{0ex}}\text{kg}\)
\(1\phantom{\rule{0.20em}{0ex}}\text{metric ton}={\text{10}}^{3}\phantom{\rule{0.20em}{0ex}}\text{kg}\)
\(1\phantom{\rule{0.20em}{0ex}}\text{atomic mass unit}\phantom{\rule{0.20em}{0ex}}\left(u\right)=1\text{.}\text{6605}×{\text{10}}^{-\text{27}}\phantom{\rule{0.20em}{0ex}}\text{kg}\)
Time \(1\phantom{\rule{0.20em}{0ex}}\text{year}\phantom{\rule{0.20em}{0ex}}\left(y\right)=3\text{.}\text{16}×{\text{10}}^{7}\phantom{\rule{0.20em}{0ex}}\text{s}\)
\(1\phantom{\rule{0.20em}{0ex}}\text{day}\phantom{\rule{0.20em}{0ex}}\left(d\right)=\text{86},\text{400}\phantom{\rule{0.20em}{0ex}}\text{s}\)
Speed \(1\phantom{\rule{0.20em}{0ex}}\text{mile per hour}\phantom{\rule{0.20em}{0ex}}\left(\text{mph}\right)=1\text{.}\text{609}\phantom{\rule{0.20em}{0ex}}\text{km}/\text{h}\)
\(1\phantom{\rule{0.20em}{0ex}}\text{nautical mile per hour}\phantom{\rule{0.20em}{0ex}}\left(\text{naut}\right)=1\text{.}\text{852}\phantom{\rule{0.20em}{0ex}}\text{km}/\text{h}\)
Angle \(1\phantom{\rule{0.20em}{0ex}}\text{degree}\phantom{\rule{0.20em}{0ex}}\left(°\right)=1\text{.}\text{745}×{\text{10}}^{-2}\phantom{\rule{0.20em}{0ex}}\text{rad}\)
\(1\phantom{\rule{0.20em}{0ex}}\text{minute of arc}\phantom{\rule{0.20em}{0ex}}{\left(}^{\text{‘}}\right)=1/\text{60}\phantom{\rule{0.20em}{0ex}}\text{degree}\)
\(1\phantom{\rule{0.20em}{0ex}}\text{second of arc}\text{}\phantom{\rule{0.20em}{0ex}}{\left(}^{\text{”}}\right)=1/\text{60}\phantom{\rule{0.20em}{0ex}}\text{minute of arc}\)
\(1\phantom{\rule{0.20em}{0ex}}\text{grad}=1\text{.}\text{571}×{\text{10}}^{-2}\phantom{\rule{0.20em}{0ex}}\text{rad}\)
Energy \(1\phantom{\rule{0.20em}{0ex}}\text{kiloton TNT}\phantom{\rule{0.20em}{0ex}}\left(\text{kT}\right)=4\text{.}2×{\text{10}}^{\text{12}}\phantom{\rule{0.20em}{0ex}}\text{J}\)
\(1\phantom{\rule{0.20em}{0ex}}\text{kilowatt hour}\phantom{\rule{0.20em}{0ex}}\left(\text{kW}\cdot h\right)=3\text{.}\text{60}×{\text{10}}^{6}\phantom{\rule{0.20em}{0ex}}\text{J}\)
\(1\phantom{\rule{0.20em}{0ex}}\text{food calorie}\phantom{\rule{0.20em}{0ex}}\left(\text{kcal}\right)=\text{4186}\phantom{\rule{0.20em}{0ex}}\text{J}\)
\(1\phantom{\rule{0.20em}{0ex}}\text{calorie}\phantom{\rule{0.20em}{0ex}}\left(\text{cal}\right)=4\text{.}\text{186}\phantom{\rule{0.20em}{0ex}}\text{J}\)
\(1\phantom{\rule{0.20em}{0ex}}\text{electron volt}\phantom{\rule{0.20em}{0ex}}\left(\text{eV}\right)=1\text{.}\text{60}×{\text{10}}^{-\text{19}}\phantom{\rule{0.20em}{0ex}}\text{J}\)
Pressure \(1\phantom{\rule{0.20em}{0ex}}\text{atmosphere}\phantom{\rule{0.20em}{0ex}}\left(\text{atm}\right)=1\text{.}\text{013}×{\text{10}}^{5}\phantom{\rule{0.20em}{0ex}}\text{Pa}\)
\(1\phantom{\rule{0.20em}{0ex}}\text{millimeter of mercury}\phantom{\rule{0.20em}{0ex}}\left(\text{mm}\phantom{\rule{0.20em}{0ex}}\text{Hg}\right)=\text{133}\text{.}3\phantom{\rule{0.20em}{0ex}}\text{Pa}\)
\(1\phantom{\rule{0.20em}{0ex}}\text{torricelli}\phantom{\rule{0.20em}{0ex}}\left(\text{torr}\right)=1\phantom{\rule{0.20em}{0ex}}\text{mm}\phantom{\rule{0.20em}{0ex}}\text{Hg}=\text{133}\text{.}3\phantom{\rule{0.20em}{0ex}}\text{Pa}\)
Nuclear decay rate \(1\phantom{\rule{0.20em}{0ex}}\text{curie}\phantom{\rule{0.20em}{0ex}}\left(\text{Ci}\right)=3\text{.}\text{70}×{\text{10}}^{\text{10}}\phantom{\rule{0.20em}{0ex}}\text{Bq}\)
Useful Formulae
Circumference of a circle with radius \(r\) or diameter \(d\) \(C=2\pi r=\mathrm{\pi d}\)
Area of a circle with radius \(r\) or diameter \(d\) \(A={\mathrm{\pi r}}^{2}={\mathrm{\pi d}}^{2}/4\)
Area of a sphere with radius \(r\) \(A=4{\pi r}^{2}\)
Volume of a sphere with radius \(r\) \(V=\left(4/3\right)\left({\mathrm{\pi r}}^{3}\right)\)

Footnotes

  • 1 Stated values are according to the National Institute of Standards and Technology Reference on Constants, Units, and Uncertainty, www.physics.nist.gov/cuu (accessed May 18, 2012). Values in parentheses are the uncertainties in the last digits. Numbers without uncertainties are exact as defined.
  • 2 Stated values are according to the National Institute of Standards and Technology Reference on Constants, Units, and Uncertainty, www.physics.nist.gov/cuu (accessed May 18, 2012). Values in parentheses are the uncertainties in the last digits. Numbers without uncertainties are exact as defined.

License

Icon for the Creative Commons Attribution 4.0 International License

Intro to Physics for Non-Majors Copyright © 2012 by OSCRiceUniversity is licensed under a Creative Commons Attribution 4.0 International License, except where otherwise noted.

Share This Book