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About the Book

About this Adaptation

Introductory Business Statistics with Interactive Spreadsheets – 1st

Canadian Edition was adapted by Mohammad Mahbobi from

Thomas K. Tiemann’s textbook, Introductory Business Statistics. For

information about what was changed in this adaptation, refer to

the copyright statement at the bottom of the home page. This

adaptation is a part of the B.C. Open Textbook project.

The B.C. Open Textbook project began in 2012 with the goal of

making post-secondary education in British Columbia more

accessible by reducing student cost through the use of openly

licensed textbooks. The B.C. Open Textbook project is administered

by BCcampus and funded by the British Columbia Ministry of

Advanced Education.

Open textbooks are open educational resources (OER); they are

instructional resources created and shared in ways so that more

people have access to them. This is a different model than

traditionally copyrighted materials. OER are defined as teaching,

learning, and research resources that reside in the public domain

or have been released under an intellectual property license that

permits their free use and re-purposing by others (Hewlett

Foundation).

Our open textbooks are openly licensed using a Creative

Commons license, and are offered in various e-book formats free of

charge, or as printed books that are available at cost.

For more information about this project, please

contact opentext@bccampus.ca.

If you are an instructor who is using this book for a course, please

let us know.
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A note from the original author: Thomas K.
Tiemann

I have been teaching introductory statistics to undergraduate

economics and business students for almost 30 years. When I took

the course as an undergraduate, before computers were widely

available to students, we had lots of homework, and learned how to

do the arithmetic needed to get the mathematical answer. When I

got to graduate school, I found out that I did not have any idea of

how statistics worked, or what test to use in what situation. The first

few times I taught the course, I stressed learning what test to use in

what situation and what the arithmetic answer meant.

As computers became more and more available, students would

do statistical studies that would have taken months to perform

before, and it became even more important that students

understand some of the basic ideas behind statistics, especially the

sampling distribution, so I shifted my courses toward an intuitive

understanding of sampling distributions and their place in

hypothesis testing. That is what is presented here—my attempt to

help students understand how statistics works, not just how to “get

the right number”.
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Introduction

From the Adapting Author

Introduction to the 1st Canadian Edition

In the era of digital devices, interactive learning has become a vital

part of the process of knowledge acquisition. The learning process

for the gadget generation students, who grow up with a wide range

of digital devices, has been dramatically affected by the interactive

features of available computer programs. These features can

improve students’ mastery of the content by actively engaging them

in the learning process. Despite the fact that many commercialized

software packages exist, Microsoft Excel is yet known as one of

the fundamental tools in both teaching and learning statistical and

quantitative techniques.

With these in mind, two new features have been added to this

textbook. First, all examples in the textbook have been

Canadianized. Second, unlike the majority of conventional

economics and business statistics textbooks available in the market,

this textbook gives you a unique opportunity to learn the basic

and most common applied statistical techniques in business in an

interactive way when using the web version. For each topic, a

customized interactive template has been created. Within each

template, you will be given an opportunity to repeatedly change

some selected inputs from the examples to observe how the entire

process as well as the outcomes are automatically adjusted. As a

result of this new interactive feature, the online textbook will enable

you to learn actively by re-estimating and/or recalculating each

example as many times as you want with different data sets.

Consequently, you will observe how the associated business
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decisions will be affected. In addition, most commonly used

statistical tables that come with conventional textbooks along with

their distributional graphs have been coded within these interactive

templates. For instance, the interactive template for the standard

normal distribution provides the value of the z associated with any

selected probability of z along with the distribution graph that

shows the probability in a shaded area. The interactive Excel

templates enable you to reproduce these values and depict the

associated graphs as many times as you want, a feature that is

not offered by conventional textbooks. Editable files of these

spreadsheets are available in the appendix of the web version of this

textbook (http://opentextbc.ca/introductorybusinessstatistics/)

for instructors and others who wish to modify them.

It is highly recommended that you use this new feature as you

read each topic by changing the selected inputs in the yellow cells

within the templates. Other than cells highlighted in yellow, the

rest of the worksheets have been locked. In the majority of cases

the return/enter key on your keyboard will execute the operation

within each template. The F9 key on your keyboard can also be used

to update the content of the template in some chapters. Please refer

to the instructions within each chapter for further details on how to

use these templates.

From the Original Author

There are two common definitions of statistics. The first is “turning

data into information”, the second is “making inferences about

populations from samples”. These two definitions are quite

different, but between them they capture most of what you will

learn in most introductory statistics courses. The first, “turning data

into information,” is a good definition of descriptive statistics—the

topic of the first part of this, and most, introductory texts. The

second, “making inferences about populations from samples”, is a
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good definition of inferential statistics—the topic of the latter part

of this, and most, introductory texts.

To reach an understanding of the second definition an

understanding of the first definition is needed; that is why we will

study descriptive statistics before inferential statistics. To reach

an understanding of how to turn data into information, an

understanding of some terms and concepts is needed. This first

chapter provides an explanation of the terms and concepts you will

need before you can do anything statistical.

Before starting in on statistics, I want to introduce you to the

two young managers who will be using statistics to solve problems

throughout this book. Ann Howard and Kevin Schmidt just

graduated from college last year, and were hired as “Assistants to

the General Manager” at Foothill Mills, a small manufacturer of

socks, stockings, and pantyhose. Since Foothill is a small firm, Ann

and Kevin get a wide variety of assignments. Their boss, John

McGrath, knows a lot about knitting hosiery, but is from the old

school of management, and doesn’t know much about using

statistics to solve business problems. We will see Ann or Kevin,

or both, in every chapter. By the end of the book, they may solve

enough problems, and use enough statistics, to earn promotions.

Data and information, samples and
populations

Though we tend to use data and information interchangeably in

normal conversation, we need to think of them as different things

when we are thinking about statistics. Data is the raw numbers

before we do anything with them. Information is the product of

arranging and summarizing those numbers. A listing of the score

everyone earned on the first statistics test I gave last semester

is data. If you summarize that data by computing the mean (the
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average score), or by producing a table that shows how many

students earned A’s, how many B’s, etc. you have turned the data

into information.

Imagine that one of Foothill Mill’s high profile, but small sales,

products is Easy Bounce, a cushioned sock that helps keep

basketball players from bruising their feet as they come down from

jumping. John McGrath gave Ann and Kevin the task of finding

new markets for Easy Bounce socks. Ann and Kevin have decided

that a good extension of this market is college volleyball players.

Before they start, they want to learn about what size socks college

volleyball players wear. First they need to gather some data, maybe

by calling some equipment managers from nearby colleges to ask

how many of what size volleyball socks were used last season. Then

they will want to turn that data into information by arranging and

summarizing their data, possibly even comparing the sizes of

volleyball socks used at nearby colleges to the sizes of socks sold to

basketball players.

Some definitions and important concepts

It may seem obvious, but a population is all of the members of a

certain group. A sample is some of the members of the population.

The same group of individuals may be a population in one context

and a sample in another. The women in your stat class are the

population of “women enrolled in this statistics class”, and they are

also a sample of “all students enrolled in this statistics class”. It is

important to be aware of what sample you are using to make an

inference about what population.

How exact is statistics? Upon close inspection, you will find that

statistics is not all that exact; sometimes I have told my classes

that statistics is “knowing when its close enough to call it equal”.

When making estimations, you will find that you are almost never

exactly right. If you make the estimations using the correct method
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however, you will seldom be far from wrong. The same idea goes

for hypothesis testing. You can never be sure that you’ve made the

correct judgement, but if you conduct the hypothesis test with the

correct method, you can be sure that the chance you’ve made the

wrong judgement is small.

A term that needs to be defined is probability. Probability is a

measure of the chance that something will occur. In statistics, when

an inference is made, it is made with some probability that it is

wrong (or some confidence that it is right). Think about repeating

some action, like using a certain procedure to infer the mean of

a population, over and over and over. Inevitably, sometimes the

procedure will give a faulty estimate, sometimes you will be wrong.

The probability that the procedure gives the wrong answer is simply

the proportion of the times that the estimate is wrong. The

confidence is simply the proportion of times that the answer is

right. The probability of something happening is expressed as the

proportion of the time that it can be expected to happen.

Proportions are written as decimal fractions, and so are

probabilities. If the probability that Foothill Hosiery’s best

salesperson will make the sale is .75, three-quarters of the time the

sale is made.

Why bother with statistics?

Reflect on what you have just read. What you are going to learn to

do by learning statistics is to learn the right way to make educated

guesses. For most students, statistics is not a favourite course. Its

viewed as hard, or cosmic, or just plain confusing. By now, you

should be thinking: “I could just skip stat, and avoid making

inferences about what populations are like by always collecting data

on the whole population and knowing for sure what the population

is like.” Well, many things come back to money, and its money that

makes you take stat. Collecting data on a whole population is usually
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very expensive, and often almost impossible. If you can make a good,

educated inference about a population from data collected from a

small portion of that population, you will be able to save yourself,

and your employer, a lot of time and money. You will also be able to

make inferences about populations for which collecting data on the

whole population is virtually impossible. Learning statistics now will

allow you to save resources later and if the resources saved later are

greater than the cost of learning statistics now, it will be worthwhile

to learn statistics. It is my hope that the approach followed in this

text will reduce the initial cost of learning statistics. If you have

already had finance, you’ll understand it this way—this approach to

learning statistics will increase the net present value of investing in

learning statistics by decreasing the initial cost.

Imagine how long it would take and how expensive it would be

if Ann and Kevin decided that they had to find out what size sock

every college volleyball player wore in order to see if volleyball

players wore the same size socks as basketball players. By knowing

how samples are related to populations, Ann and Kevin can quickly

and inexpensively get a good idea of what size socks volleyball

players wear, saving Foothill a lot of money and keeping John

McGrath happy.

There are two basic types of inferences that can be made. The

first is to estimate something about the population, usually its mean.

The second is to see if the population has certain characteristics, for

example you might want to infer if a population has a mean greater

than 5.6. This second type of inference, hypothesis testing, is what

we will concentrate on. If you understand hypothesis testing,

estimation is easy. There are many applications, especially in more

advanced statistics, in which the difference between estimation and

hypothesis testing seems blurred.
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Estimation

Estimation is one of the basic inferential statistics techniques. The

idea is simple; collect data from a sample and process it in some

way that yields a good inference of something about the population.

There are two types of estimates: point estimates and interval

estimates. To make a point estimate, you simply find the single

number that you think is your best guess of the characteristic of the

population. As you can imagine, you will seldom be exactly correct,

but if you make your estimate correctly, you will seldom be very far

wrong. How to correctly make these estimates is an important part

of statistics.

To make an interval estimate, you define an interval within which

you believe the population characteristic lies. Generally, the wider

the interval, the more confident you are that it contains the

population characteristic. At one extreme, you have complete

confidence that the mean of a population lies between – ∞ and

+ ∞ but that information has little value. At the other extreme,

though you can feel comfortable that the population mean has a

value close to that guessed by a correctly conducted point estimate,

you have almost no confidence (“zero plus” to statisticians) that the

population mean is exactly equal to the estimate. There is a trade-

off between width of the interval, and confidence that it contains

the population mean. How to find a narrow range with an

acceptable level of confidence is another skill learned when learning

statistics.

Hypothesis testing

The other type of inference is hypothesis testing. Though

hypothesis testing and interval estimation use similar mathematics,

they make quite different inferences about the population.
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Estimation makes no prior statement about the population; it is

designed to make an educated guess about a population that you

know nothing about. Hypothesis testing tests to see if the

population has a certain characteristic—say a certain mean. This

works by using statisticians’ knowledge of how samples taken from

populations with certain characteristics are likely to look to see if

the sample you have is likely to have come from such a population.

A simple example is probably the best way to get to this.

Statisticians know that if the means of a large number of samples

of the same size taken from the same population are averaged

together, the mean of those sample means equals the mean of the

original population, and that most of those sample means will be

fairly close to the population mean. If you have a sample that you

suspect comes from a certain population, you can test the

hypothesis that the population mean equals some number, m, by

seeing if your sample has a mean close to m or not. If your sample

has a mean close to m, you can comfortably say that your sample is

likely to be one of the samples from a population with a mean of m.

Sampling

It is important to recognize that there is another cost to using

statistics, even after you have learned statistics. As we said before,

you are never sure that your inferences are correct. The more

precise you want your inference to be, either the larger the sample

you will have to collect (and the more time and money you’ll have

to spend on collecting it), or the greater the chance you must take

that you’ll make a mistake. Basically, if your sample is a good

representation of the whole population—if it contains members

from across the range of the population in proportions similar to

that in the population—the inferences made will be good. If you

manage to pick a sample that is not a good representation of the

population, your inferences are likely to be wrong. By choosing
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samples carefully, you can increase the chance of a sample which

is representative of the population, and increase the chance of an

accurate inference.

The intuition behind this is easy. Imagine that you want to infer

the mean of a population. The way to do this is to choose a sample,

find the mean of that sample, and use that sample mean as your

inference of the population mean. If your sample happened to

include all, or almost all, observations with values that are at the

high end of those in the population, your sample mean will

overestimate the population mean. If your sample includes roughly

equal numbers of observations with “high” and “low” and “middle”

values, the mean of the sample will be close to the population mean,

and the sample mean will provide a good inference of the population

mean. If your sample includes mostly observations from the middle

of the population, you will also get a good inference. Note that the

sample mean will seldom be exactly equal to the population mean,

however, because most samples will have a rough balance between

high and low and middle values, the sample mean will usually be

close to the true population mean. The key to good sampling is to

avoid choosing the members of your sample in a manner that tends

to choose too many “high” or too many “low” observations.

There are three basic ways to accomplish this goal. You can

choose your sample randomly, you can choose a stratified sample,

or you can choose a cluster sample. While there is no way to insure

that a single sample will be representative, following the discipline

of random, stratified, or cluster sampling greatly reduces the

probability of choosing an unrepresentative sample.

The sampling distribution

The thing that makes statistics work is that statisticians have

discovered how samples are related to populations. This means that

statisticians (and, by the end of the course, you) know that if all of
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the possible samples from a population are taken and something

(generically called a “statistic”) is computed for each sample,

something is known about how the new population of statistics

computed from each sample is related to the original population.

For example, if all of the samples of a given size are taken from

a population, the mean of each sample is computed, and then the

mean of those sample means is found, statisticians know that the

mean of the sample means is equal to the mean of the original

population.

There are many possible sampling distributions. Many different

statistics can be computed from the samples, and each different

original population will generate a different set of samples. The

amazing thing, and the thing that makes it possible to make

inferences about populations from samples, is that there are a few

statistics which all have about the same sampling distribution when

computed from the samples from many different populations.

You are probably still a little confused about what a sampling

distribution is. It will be discussed more in the chapter on the

Normal and t-distributions. An example here will help. Imagine that

you have a population—the sock sizes of all of the volleyball players

in the South Atlantic Conference. You take a sample of a certain

size, say six, and find the mean of that sample. Then take another

sample of six sock sizes, and find the mean of that sample. Keep

taking different samples until you’ve found the mean of all of the

possible samples of six. You will have generated a new population,

the population of sample means. This population is the sampling

distribution. Because statisticians often can find what proportion of

members of this new population will take on certain values if they

know certain things about the original population, we will be able to

make certain inferences about the original population from a single

sample.

Univariate and multivariate statistics
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statistics and the idea of an observation

A population may include just one thing about every member of a

group, or it may include two or more things about every member.

In either case there will be one observation for each group member.

Univariate statistics are concerned with making inferences about

one variable populations, like “what is the mean shoe size of

business students?” Multivariate statistics is concerned with making

inferences about the way that two or more variables are connected

in the population like, “do students with high grade point averages

usually have big feet?” What’s important about multivariate

statistics is that it allows you to make better predictions. If you had

to predict the shoe size of a business student and you had found out

that students with high grade point averages usually have big feet,

knowing the student’s grade point average might help. Multivariate

statistics are powerful and find applications in economics, finance,

and cost accounting.

Ann Howard and Kevin Schmidt might use multivariate statistics

if Mr McGrath asked them to study the effects of radio advertising

on sock sales. They could collect a multivariate sample by collecting

two variables from each of a number of cities—recent changes in

sales and the amount spent on radio ads. By using multivariate

techniques you will learn in later chapters, Ann and Kevin can see if

more radio advertising means more sock sales.

Conclusion

As you can see, there is a lot of ground to cover by the end of

this course. There are a few ideas that tie most of what you learn

together: populations and samples, the difference between data and

information, and most important, sampling distributions. We’ll start

out with the easiest part, descriptive statistics, turning data into
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information. Your professor will probably skip some chapters, or do

a chapter toward the end of the book before one that’s earlier in

the book. As long as you cover the chapters “Descriptive Statistics

and frequency distributions”, “The normal and the t-distributions”,

“Making estimates” and that is alright.

You should learn more than just statistics by the time the

semester is over. Statistics is fairly difficult, largely because

understanding what is going on requires that you learn to stand

back and think about things; you cannot memorize it all, you have to

figure out much of it. This will help you learn to use statistics, not

just learn statistics for its own sake.

You will do much better if you attend class regularly and if you

read each chapter at least three times. First, the day before you are

going to discuss a topic in class, read the chapter carefully, but do

not worry if you understand everything. Second, soon after a topic

has been covered in class, read the chapter again, this time going

slowly, making sure you can see what is going on. Finally, read it

again before the exam. Though this is a great statistics book, the

stuff is hard, and no one understands statistics the first time.
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1. Chapter 1. Descriptive
Statistics and Frequency
Distributions

This chapter is about describing populations and samples, a subject

known as descriptive statistics. This will all make more sense if

you keep in mind that the information you want to produce is

a description of the population or sample as a whole, not a

description of one member of the population. The first topic in

this chapter is a discussion of distributions, essentially pictures

of populations (or samples). Second will be the discussion of

descriptive statistics. The topics are arranged in this order because

the descriptive statistics can be thought of as ways to describe the

picture of a population, the distribution.

Distributions

The first step in turning data into information is to create a

distribution. The most primitive way to present a distribution is to

simply list, in one column, each value that occurs in the population

and, in the next column, the number of times it occurs. It is

customary to list the values from lowest to highest. This simple

listing is called a frequency distribution. A more elegant way to

turn data into information is to draw a graph of the distribution.

Customarily, the values that occur are put along the horizontal axis

and the frequency of the value is on the vertical axis.

Ann is the equipment manager for the Chargers athletic teams at

Camosun College, located in Victoria, British Columbia. She called

the basketball and volleyball team managers and collected the
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following data on sock sizes used by their players. Ann found out

that last year the basketball team used 14 pairs of size 7 socks, 18

pairs of size 8, 15 pairs of size 9, and 6 pairs of size 10 were used.

The volleyball team used 3 pairs of size 6, 10 pairs of size 7, 15 pairs

of size 8, 5 pairs of size 9, and 11 pairs of size 10. Ann arranged her

data into a distribution and then drew a graph called a histogram.

Ann could have created a relative frequency distribution as well as a

frequency distribution. The difference is that instead of listing how

many times each value occurred, Ann would list what proportion of

her sample was made up of socks of each size.

You can use the Excel template below (Figure 1.1) to see all the

histograms and frequencies she has created. You may also change

her numbers in the yellow cells to see how the graphs will change

automatically.

An interactive or media element has been excluded

from this version of the text. You can view it online

here: https://pressbooks.nscc.ca/

introductorybusinessstatistics/?p=21

Figure 1.1 Interactive Excel Template of a Histogram – see Appendix

1.

Notice that Ann has drawn the graphs differently. In the first graph,

she has used bars for each value, while on the second, she has

drawn a point for the relative frequency of each size, and then

“connected the dots”. While both methods are correct, when you

have values that are continuous, you will want to do something

more like the “connect the dots” graph. Sock sizes are discrete,

they only take on a limited number of values. Other things have

continuous values; they can take on an infinite number of values,

though we are often in the habit of rounding them off. An example
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is how much students weigh. While we usually give our weight in

whole kilograms in Canada (“I weigh 60 kilograms”), few have a

weight that is exactly so many kilograms. When you say “I weigh

60”, you actually mean that you weigh between 59 1/2 and 60 1/

2 kilograms. We are heading toward a graph of a distribution of a

continuous variable where the relative frequency of any exact value

is very small, but the relative frequency of observations between

two values is measurable. What we want to do is to get used to

the idea that the total area under a “connect the dots” relative

frequency graph, from the lowest to the highest possible value, is

one. Then the part of the area under the graph between two values

is the relative frequency of observations with values within that

range. The height of the line above any particular value has lost any

direct meaning, because it is now the area under the line between

two values that is the relative frequency of an observation between

those two values occurring.

You can get some idea of how this works if you go back to the

bar graph of the distribution of sock sizes, but draw it with relative

frequency on the vertical axis. If you arbitrarily decide that each bar

has a width of one, then the area under the curve between 7.5 and

8.5 is simply the height times the width of the bar for sock size 8:

.3510*1. If you wanted to find the relative frequency of sock sizes

between 6.5 and 8.5, you could simply add together the area of the

bar for size 7 (that’s between 6.5 and 7.5) and the bar for size 8

(between 7.5 and 8.5).

Descriptive statistics

Now that you see how a distribution is created, you are ready to

learn how to describe one. There are two main things that need

to be described about a distribution: its location and its shape.

Generally, it is best to give a single measure as the description of the

location and a single measure as the description of the shape.
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Mean

To describe the location of a distribution, statisticians use a typical
value from the distribution. There are a number of different ways

to find the typical value, but by far the most used is the arithmetic
mean, usually simply called the mean. You already know how to

find the arithmetic mean, you are just used to calling it the average.

Statisticians use average more generally — the arithmetic mean is

one of a number of different averages. Look at the formula for the

arithmetic mean:

All you do is add up all of the members of the population,

, and divide by how many members there are, N. The only trick is to

remember that if there is more than one member of the population

with a certain value, to add that value once for every member that

has it. To reflect this, the equation for the mean sometimes is

written:

where fi is the frequency of members of the population with the

value xi.

This is really the same formula as above. If there are seven

members with a value of ten, the first formula would have you add

seven ten times. The second formula simply has you multiply seven

by ten — the same thing as adding together ten sevens.

Other measures of location are the median and the mode. The

median is the value of the member of the population that is in

the middle when the members are sorted from smallest to largest.

Half of the members of the population have values higher than the

median, and half have values lower. The median is a better measure

of location if there are one or two members of the population that

are a lot larger (or a lot smaller) than all the rest. Such extreme
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values can make the mean a poor measure of location, while they

have little effect on the median. If there are an odd number of

members of the population, there is no problem finding which

member has the median value. If there are an even number of

members of the population, then there is no single member in the

middle. In that case, just average together the values of the two

members that share the middle.

The third common measure of location is the mode. If you have

arranged the population into a frequency or relative frequency

distribution, the mode is easy to find because it is the value that

occurs most often. While in some sense, the mode is really the

most typical member of the population, it is often not very near

the middle of the population. You can also have multiple modes.

I am sure you have heard someone say that “it was a bimodal
distribution“. That simply means that there were two modes, two

values that occurred equally most often.

If you think about it, you should not be surprised to learn that

for bell-shaped distributions, the mean, median, and mode will be

equal. Most of what statisticians do when describing or inferring the

location of a population is done with the mean. Another thing to

think about is using a spreadsheet program, like Microsoft Excel,

when arranging data into a frequency distribution or when finding

the median or mode. By using the sort and distribution commands

in 1-2-3, or similar commands in Excel, data can quickly be arranged

in order or placed into value classes and the number in each class

found. Excel also has a function, =AVERAGE(…), for finding the

arithmetic mean. You can also have the spreadsheet program draw

your frequency or relative frequency distribution.

One of the reasons that the arithmetic mean is the most used

measure of location is because the mean of a sample is an unbiased
estimator of the population mean. Because the sample mean is an

unbiased estimator of the population mean, the sample mean is

a good way to make an inference about the population mean. If

you have a sample from a population, and you want to guess what

the mean of that population is, you can legitimately guess that the
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population mean is equal to the mean of your sample. This is a

legitimate way to make this inference because the mean of all the

sample means equals the mean of the population, so if you used this

method many times to infer the population mean, on average you’d

be correct.

All of these measures of location can be found for samples as

well as populations, using the same formulas. Generally, μ is used

for a population mean, and x is used for sample means. Upper-

case N, really a Greek nu, is used for the size of a population, while

lower case n is used for sample size. Though it is not universal,

statisticians tend to use the Greek alphabet for population

characteristics and the Roman alphabet for sample characteristics.

Measuring population shape

Measuring the shape of a distribution is more difficult. Location has

only one dimension (“where?”), but shape has a lot of dimensions.

We will talk about two,and you will find that most of the time, only

one dimension of shape is measured. The two dimensions of shape

discussed here are the width and symmetry of the distribution. The

simplest way to measure the width is to do just that—the range

is the distance between the lowest and highest members of the

population. The range is obviously affected by one or two

population members that are much higher or lower than all the rest.

The most common measures of distribution width are the

standard deviation and the variance. The standard deviation is

simply the square root of the variance, so if you know one (and

have a calculator that does squares and square roots) you know the

other. The standard deviation is just a strange measure of the mean

distance between the members of a population and the mean of the

population. This is easiest to see if you start out by looking at the

formula for the variance:
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Look at the numerator. To find the variance, the first step (after

you have the mean, μ) is to take each member of the population, and

find the difference between its value and the mean; you should have

N differences. Square each of those, and add them together, dividing

the sum by N, the number of members of the population. Since you

find the mean of a group of things by adding them together and

then dividing by the number in the group, the variance is simply the

mean of the squared distances between members of the population

and the population mean.

Notice that this is the formula for a population characteristic, so

we use the Greek σ and that we write the variance as σ2, or sigma
square because the standard deviation is simply the square root of

the variance, its symbol is simply sigma, σ.

One of the things statisticians have discovered is that 75 per

cent of the members of any population are within two standard

deviations of the mean of the population. This is known as

Chebyshev’s theorem. If the mean of a population of shoe sizes is

9.6 and the standard deviation is 1.1, then 75 per cent of the shoe

sizes are between 7.4 (two standard deviations below the mean) and

11.8 (two standard deviations above the mean). This same theorem

can be stated in probability terms: the probability that anything is

within two standard deviations of the mean of its population is .75.

It is important to be careful when dealing with variances and

standard deviations. In later chapters, there are formulas using the

variance, and formulas using the standard deviation. Be sure you

know which one you are supposed to be using. Here again,

spreadsheet programs will figure out the standard deviation for

you. In Excel, there is a function, =STDEVP(…), that does all of

the arithmetic. Most calculators will also compute the standard

deviation. Read the little instruction booklet, and find out how to

have your calculator do the numbers before you do any homework

or have a test.

The other measure of shape we will discuss here is the measure
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of skewness. Skewness is simply a measure of whether or not the

distribution is symmetric or if it has a long tail on one side, but not

the other. There are a number of ways to measure skewness, with

many of the measures based on a formula much like the variance.

The formula looks a lot like that for the variance, except the

distances between the members and the population mean are

cubed, rather than squared, before they are added together:

At first, it might not seem that cubing rather than squaring those

distances would make much difference. Remember, however, that

when you square either a positive or negative number, you get a

positive number, but when you cube a positive, you get a positive

and when you cube a negative you get a negative. Also remember

that when you square a number, it gets larger, but that when you

cube a number, it gets a whole lot larger. Think about a distribution

with a long tail out to the left. There are a few members of that

population much smaller than the mean, members for which (x –

μ) is large and negative. When these are cubed, you end up with

some really big negative numbers. Because there are no members

with such large, positive (x – μ), there are no corresponding really

big positive numbers to add in when you sum up the (x – μ)3, and the

sum will be negative. A negative measure of skewness means that

there is a tail out to the left, a positive measure means a tail to the

right. Take a minute and convince yourself that if the distribution

is symmetric, with equal tails on the left and right, the measure of

skew is zero.

To be really complete, there is one more thing to measure,

kurtosis or peakedness. As you might expect by now, it is measured

by taking the distances between the members and the mean and

raising them to the fourth power before averaging them together.

20 | Chapter 1. Descriptive Statistics and Frequency Distributions



Measuring sample shape

Measuring the location of a sample is done in exactly the way that

the location of a population is done. However, measuring the shape

of a sample is done a little differently than measuring the shape

of a population. The reason behind the difference is the desire to

have the sample measurement serve as an unbiased estimator of the

population measurement. If we took all of the possible samples of

a certain size, n, from a population and found the variance of each

one, and then found the mean of those sample variances, that mean

would be a little smaller than the variance of the population.

You can see why this is so if you think it through. If you knew

the population mean, you could find for each

sample, and have an unbiased estimate for σ2. However, you do not

know the population mean, so you will have to infer it. The best

way to infer the population mean is to use the sample mean x. The

variance of a sample will then be found by averaging together all of

the .

The mean of a sample is obviously determined by where the

members of that sample lie. If you have a sample that is mostly

from the high (or right) side of a population’s distribution, then the

sample mean will almost for sure be greater than the population

mean. For such a sample, would underestimate

σ2. The same is true for samples that are mostly from the low (or left)

side of the population. If you think about what kind of samples will

have that is greater than the population σ2, you

will come to the realization that it is only those samples with a few

very high members and a few very low members — and there are
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not very many samples like that. By now you should have convinced

yourself that will result in a biased estimate of σ2.

You can see that, on average, it is too small.

How can an unbiased estimate of the population variance, σ2,

be found? If is on average too small, we need

to do something to make it a little bigger. We want to keep the

, but if we divide it by something a little smaller,

the result will be a little larger. Statisticians have found out that

the following way to compute the sample variance results in an

unbiased estimator of the population variance:

If we took all of the possible samples of some size, n, from a

population, and found the sample variance for each of those

samples, using this formula, the mean of those sample variances

would equal the population variance, σ2.

Note that we use s2 instead of σ2, and n instead of N (really nu, not

en) since this is for a sample and we want to use the Roman letters

rather than the Greek letters, which are used for populations.

There is another way to see why you divide by n-1. We also have to

address something called degrees of freedom before too long, and

the degrees of freedom are the key in the other explanation. As we

go through this explanation, you should be able to see that the two

explanations are related.

Imagine that you have a sample with 10 members, n=10, and you

want to use it to estimate the variance of the population from

which it was drawn. You write each of the 10 values on a separate

scrap of paper. If you know the population mean, you could start

by computing all 10 (x – μ)2. However, in the usual case, you do not

know μ, and you must start by finding x from the values on the 10

scraps to use as an estimate of m. Once you have found x, you could
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lose any one of the 10 scraps and still be able to find the value that

was on the lost scrap from the other 9 scraps. If you are going to use

x in the formula for sample variance, only 9 (or n-1) of the x’s are free

to take on any value. Because only n-1 of the x’s can vary freely, you

should divide by n-1, the number of (x’s) that are

really free. Once you use x in the formula for sample variance, you

use up one degree of freedom, leaving only n-1. Generally, whenever

you use something you have previously computed from a sample

within a formula, you use up a degree of freedom.

A little thought will link the two explanations. The first

explanation is based on the idea that x, the estimator of μ, varies

with the sample. It is because x varies with the sample that a degree

of freedom is used up in the second explanation.

The sample standard deviation is found simply by taking the

square root of the sample variance:

While the sample variance is an unbiased estimator of population

variance, the sample standard deviation is not an unbiased

estimator of the population standard deviation — the square root

of the average is not the same as the average of the square roots.

This causes statisticians to use variance where it seems as though

they are trying to get at standard deviation. In general, statisticians

tend to use variance more than standard deviation. Be careful with

formulas using sample variance and standard deviation in the

following chapters. Make sure you are using the right one. Also note

that many calculators will find standard deviation using both the

population and sample formulas. Some use σ and s to show the

difference between population and sample formulas, some use sn

and sn-1 to show the difference.

If Ann wanted to infer what the population distribution of

volleyball players’ sock sizes looked like she could do so from her

sample. If she is going to send volleyball coaches packages of socks

for the players to try, she will want to have the packages contain an
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assortment of sizes that will allow each player to have a pair that fits.

Ann wants to infer what the distribution of volleyball players’ sock

sizes looks like. She wants to know the mean and variance of that

distribution. Her data, again, are shown in Table 1.1.

Table 1.1 Ann’s
Data

Size Frequency

6 3

7 24

8 33

9 20

10 17

The mean sock size can be found:

To find the sample standard deviation, Ann decides to use Excel.

She lists the sock sizes that were in the sample in column A (see

Table 1.2) , and the frequency of each of those sizes in column B. For

column C, she has the computer find for each of

the sock sizes, using the formula (A1-8.25)2 in the first row, and then

copying it down to the other four rows. In D1, she multiplies C1, by

the frequency using the formula =B1*C1, and copying it down into

the other rows. Finally, she finds the sample standard deviation by

adding up the five numbers in column D and dividing by n-1 = 96

using the Excel formula =sum(D1:D5)/96. The spreadsheet appears

like this when she is done:
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Table 1.2 Sock Sizes

A B C D E

1 6 3 5.06 15.19

2 7 24 1.56 37.5

3 8 33 0.06 2.06

4 9 20 0.56 11.25

5 10 17 3.06 52.06

6 n= 97 Var = 1.217139

7 Std.dev = 1.103.24

Ann now has an estimate of the variance of the sizes of socks worn

by basketball and volleyball players, 1.22. She has inferred that the

population of Chargers players’ sock sizes has a mean of 8.25 and a

variance of 1.22.

Ann’s collected data can simply be added to the following Excel

template. The calculations of both variance and standard deviation

have been shown below. You can change her numbers to see how

these two measures change.

An interactive or media element has been excluded

from this version of the text. You can view it online

here: https://pressbooks.nscc.ca/

introductorybusinessstatistics/?p=21

Figure 1.2 Interactive Excel Template to Calculate Variance and

Standard Deviation – see Appendix 1.
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Summary

To describe a population you need to describe the picture or graph

of its distribution. The two things that need to be described about

the distribution are its location and its shape. Location is measured

by an average, most often the arithmetic mean. The most important

measure of shape is a measure of dispersion, roughly width, most

often the variance or its square root the standard deviation.

Samples need to be described, too. If all we wanted to do with

sample descriptions was describe the sample, we could use exactly

the same measures for sample location and dispersion that are used

for populations. However, we want to use the sample describers for

dual purposes: (a) to describe the sample, and (b) to make inferences

about the description of the population that sample came from.

Because we want to use them to make inferences, we want our

sample descriptions to be unbiased estimators. Our desire to

measure sample dispersion with an unbiased estimator of

population dispersion means that the formula we use for computing

sample variance is a little different from the one used for computing

population variance.
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2. Chapter 2. The Normal and
t-Distributions

The normal distribution is simply a distribution with a certain shape.

It is normal because many things have this same shape. The normal

distribution is the bell-shaped distribution that describes how so

many natural, machine-made, or human performance outcomes are

distributed. If you ever took a class when you were “graded on a

bell curve”, the instructor was fitting the class’s grades into a normal

distribution—not a bad practice if the class is large and the tests are

objective, since human performance in such situations is normally

distributed. This chapter will discuss the normal distribution and

then move on to a common sampling distribution, the t-

distribution. The t-distribution can be formed by taking many

samples (strictly, all possible samples) of the same size from a

normal population. For each sample, the same statistic, called the

t-statistic, which we will learn more about later, is calculated. The

relative frequency distribution of these t-statistics is the t-

distribution. It turns out that t-statistics can be computed a number

of different ways on samples drawn in a number of different

situations and still have the same relative frequency distribution.

This makes the t-distribution useful for making many different

inferences, so it is one of the most important links between samples

and populations used by statisticians. In between discussing the

normal and t-distributions, we will discuss the central limit

theorem. The t-distribution and the central limit theorem give us

knowledge about the relationship between sample means and

population means that allows us to make inferences about the

population mean.

The way the t-distribution is used to make inferences about

populations from samples is the model for many of the inferences

that statisticians make. Since you will be learning to make
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inferences like a statistician, try to understand the general model of

inference making as well as the specific cases presented. Briefly, the

general model of inference-making is to use statisticians’ knowledge

of a sampling distribution like the t-distribution as a guide to the

probable limits of where the sample lies relative to the population.

Remember that the sample you are using to make an inference

about the population is only one of many possible samples from the

population. The samples will vary, some being highly representative

of the population, most being fairly representative, and a few not

being very representative at all. By assuming that the sample is

at least fairly representative of the population, the sampling

distribution can be used as a link between the sample and the

population so you can make an inference about some characteristic

of the population.

These ideas will be developed more later on. The immediate goal

of this chapter is to introduce you to the normal distribution, the

central limit theorem, and the t-distribution.

Normal Distributions

Normal distributions are bell-shaped and symmetric. The mean,

median, and mode are equal. Most of the members of a normally

distributed population have values close to the mean—in a normal

population 96 per cent of the members (much better than

Chebyshev’s 75 per cent) are within 2 σ of the mean.

Statisticians have found that many things are normally

distributed. In nature, the weights, lengths, and thicknesses of all

sorts of plants and animals are normally distributed. In

manufacturing, the diameter, weight, strength, and many other

characteristics of human- or machine-made items are normally

distributed. In human performance, scores on objective tests, the

outcomes of many athletic exercises, and college student grade
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point averages are normally distributed. The normal distribution

really is a normal occurrence.

If you are a skeptic, you are wondering how can GPAs and the

exact diameter of holes drilled by some machine have the same

distribution—they are not even measured with the same units. In

order to see that so many things have the same normal shape,

all must be measured in the same units (or have the units

eliminated)—they must all be standardized. Statisticians standardize

many measures by using the standard deviation. All normal

distributions have the same shape because they all have the same

relative frequency distribution when the values for their members are

measured in standard deviations above or below the mean.

Using the customary Canadian system of measurement, if the

weight of pet dogs is normally distributed with a mean of 10.8

kilograms and a standard deviation of 2.3 kilograms and the daily

sales at The First Brew Expresso Cafe are normally distributed with

μ = $341.46 and σ = $53.21, then the same proportion of pet dogs

weigh between 8.5 kilograms (μ – 1σ) and 10.8 kilograms (μ) as the

proportion of daily First Brew sales that lie between μ – 1σ ($288.25)

and μ ($341.46). Any normally distributed population will have the

same proportion of its members between the mean and one

standard deviation below the mean. Converting the values of the

members of a normal population so that each is now expressed in

terms of standard deviations from the mean makes the populations

all the same. This process is known as standardization, and it makes

all normal populations have the same location and shape.

This standardization process is accomplished by computing a z-
score for every member of the normal population. The z-score is

found by:

This converts the original value, in its original units, into a

standardized value in units of standard deviations from the mean.

Look at the formula. The numerator is simply the difference

between the value of this member of the population x, and the

mean of the population μ. It can be measured in centimeters, or
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points, or whatever. The denominator is the standard deviation of

the population, σ, and it is also measured in centimetres, or points,

or whatever. If the numerator is 15 cm and the standard deviation

is 10 cm, then the z will be 1.5. This particular member of the

population, one with a diameter 15 cm greater than the mean

diameter of the population, has a z-value of 1.5 because its value is

1.5 standard deviations greater than the mean. Because the mean of

the x’s is μ, the mean of the z-scores is zero.

We could convert the value of every member of any normal

population into a z-score. If we did that for any normal population

and arranged those z-scores into a relative frequency distribution,

they would all be the same. Each and every one of those

standardized normal distributions would have a mean of zero and

the same shape. There are many tables that show what proportion

of any normal population will have a z-score less than a certain

value. Because the standard normal distribution is symmetric with

a mean of zero, the same proportion of the population that is less

than some positive z is also greater than the same negative z. Some

values from a standard normal table appear in Table 2.1

Table 2.1 Standard Normal Table

Proportion below .75 .90 .95 .975 .99 .995

z-score .674 1.282 1.645 1.960 2.326 2.576

You can also use the interactive cumulative standard normal
distributions illustrated in the Excel template in Figure 2.1. The

graph on the top calculates the z-value if any probability value is

entered in the yellow cell. The graph on the bottom computes the

probability of z for any given z-value in the yellow cell. In either

case, the plot of the appropriate standard normal distribution will

be shown with the cumulative probabilities in yellow or purple.
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An interactive or media element has been excluded

from this version of the text. You can view it online

here: https://pressbooks.nscc.ca/

introductorybusinessstatistics/?p=23

Figure 2.1 Interactive Excel Template for Cumulative Standard

Normal Distributions – see Appendix 2.

The production manager of a beer company located in Delta, BC,

has asked one of his technicians, Kevin, “How much does a pack

of 24 beer bottles usually weigh?” Kevin asks the people in quality

control what they know about the weight of these packs and is told

that the mean weight is 16.32 kilograms with a standard deviation of

.87 kilograms. Kevin decides that the production manager probably

wants more than the mean weight and decides to give his boss the

range of weights within which 95% of packs of 24 beer bottles falls.

Kevin sees that leaving 2.5% (.025 ) in the left tail and 2.5% (.025) in

the right tail will leave 95% (.95) in the middle. He assumes that the

pack weights are normally distributed, a reasonable assumption for

a machine-made product, and consulting a standard normal table,

he sees that .975 of the members of any normal population have a z-

score less than 1.96 and that .975 have a z-score greater than -1.96,

so .95 have a z-score between ±1.96.

Now that he knows that 95% of the 24 packs of beer bottles will

have a weight with a z-score between ±1.96, Kevin can translate

those z’s. By solving the equation for both +1.96 and -1.96, he will

find the boundaries of the interval within which 95% of the weights

of the packs fall:

Solving for x, Kevin finds that the upper limit is 18.03 kilograms.

He then solves for z=-1.96:
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He finds that the lower limit is 14.61 kilograms. He can now go to

his manager and tell him: “95% of the packs of 24 beer bottles weigh

between 14.61 and 18.03 kilograms.”

The central limit theorem

If this was a statistics course for math majors, you would probably

have to prove this theorem. Because this text is designed for

business and other non-math students, you will only have to learn

to understand what the theorem says and why it is important. To

understand what it says, it helps to understand why it works. Here

is an explanation of why it works.

The theorem is about sampling distributions and the relationship

between the location and shape of a population and the location and

shape of a sampling distribution generated from that population.

Specifically, the central limit theorem explains the relationship

between a population and the distribution of sample means found

by taking all of the possible samples of a certain size from the

original population, finding the mean of each sample, and arranging

them into a distribution.

The sampling distribution of means is an easy concept. Assume

that you have a population of x’s. You take a sample of n of those

x’s and find the mean of that sample, giving you one x. Then take

another sample of the same size, n, and find its x. Do this over

and over until you have chosen all possible samples of size n. You

will have generated a new population, a population of x’s. Arrange

this population into a distribution, and you have the sampling

distribution of means. You could find the sampling distribution of

medians, or variances, or some other sample statistic by collecting

all of the possible samples of some size, n, finding the median,
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variance, or other statistic about each sample, and arranging them

into a distribution.

The central limit theorem is about the sampling distribution of

means. It links the sampling distribution of x’s with the original

distribution of x’s. It tells us that:

(1) The mean of the sample means equals the mean of the original

population, μx = μ. This is what makes x an unbiased estimator of μ.

(2) The distribution of x’s will be bell-shaped, no matter what the

shape of the original distribution of x’s.

This makes sense when you stop and think about it. It means

that only a small portion of the samples have means that are far

from the population mean. For a sample to have a mean that is far

from μx, almost all of its members have to be from the right tail

of the distribution of x’s, or almost all have to be from the left tail.

There are many more samples with most of their members from the

middle of the distribution, or with some members from the right tail

and some from the left tail, and all of those samples will have an x

close to μx.

(3a) The larger the samples, the closer the sampling distribution

will be to normal, and

(3b) if the distribution of x’s is normal, so is the distribution of x’s.

These come from the same basic reasoning as (2), but would

require a formal proof since normal distribution is a mathematical

concept. It is not too hard to see that larger samples will generate

a “more bell-shaped” distribution of sample means than smaller

samples, and that is what makes (3a) work.

(4) The variance of the x’s is equal to the variance of the x’s divided

by the sample size, or:

therefore the standard deviation of the sampling distribution is:

While it is a difficult to see why this exact formula holds without

going through a formal proof, the basic idea that larger samples

yield sampling distributions with smaller standard deviations can
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be understood intuitively. If then .

Furthermore, when the sample size n rises, σ2
x gets smaller. This is

because it becomes more unusual to get a sample with an x that is

far from μ as n gets larger. The standard deviation of the sampling

distribution includes an (x – μ) for each, but remember that there

are not many x’s that are as far from μ as there are x’s that are far

from μ, and as n grows there are fewer and fewer samples with an

x far from μ. This means that there are not many (x – μ) that are as

large as quite a few (x – μ) are. By the time you square everything,

the average is going to be much smaller that the average (x – μ)2, so

is going to be smaller than σx. If the mean volume of soft drink

in a population of 355 mL cans is 360 mL with a variance of 5 (and

a standard deviation of 2.236), then the sampling distribution of

means of samples of nine cans will have a mean of 360 mL and a

variance of 5/9=.556 (and a standard deviation of 2.236/3=.745).

You can also use the interactive Excel template in Figure 2.2 that

illustrates the central limit theorem. Simply double click on the

yellow cell in the sheet called CLT(n=5) or in the yellow cell of the

sheet called CLT(n=15), and then click enter. Do not try to change

the formula in these yellow cells. This will automatically take a

sample from the population distribution and recreate the associated

sampling distribution of x. You can repeat this process by double

clicking on the yellow cell to see that regardless of the population

distribution, the sampling distribution of x is approximately normal.

You will also realize that the mean of the population, and the

sampling distribution of x are always the same.

An interactive or media element has been excluded

from this version of the text. You can view it online

here: https://pressbooks.nscc.ca/

introductorybusinessstatistics/?p=23
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Figure 2.2 Interactive Excel Template for Illustrating the Central

Limit Theorem – see Appendix 2.

Following this same line of reasoning, you can see in the Figure

2.2 template that when you do the resampling processes with n=5

and then n=15, the sampling error becomes smaller. You can also

observe, when you change the sample size from 5 to 15 (moving from

sheet CLT(n=15) to CLT(n=5)), that as the sample size gets larger,

the variance and standard deviation of the sampling distribution get

smaller. Just remember that as sample size grows, samples with an x

that is far from μ get rarer and rarer, so that the average (x – μ)2 gets

smaller. The average (x – μ)2 is the variance.

Back to the soft drink example. If larger samples of soft drink

bottles are taken, say samples of 16, even fewer of the samples will

have means that are very far from the mean of 360 mL. The variance

of the sampling distribution when n=16 will therefore be smaller.

According to what you have just learned, the variance will be only

5/16=.3125 (and the standard deviation will be 2.236/4=.559). The

formula matches what logically is happening; as the samples get

bigger, the probability of getting a sample with a mean that is far

away from the population mean gets smaller, so the sampling

distribution of means gets narrower and the variance (and standard

deviation) get smaller. In the formula, you divide the population

variance by the sample size to get the sampling distribution

variance. Since bigger samples means dividing by a bigger number,

the variance falls as sample size rises. If you are using the sample

mean to infer the population mean, using a bigger sample will

increase the probability that your inference is very close to correct

because more of the sample means are very close to the population

mean. There is obviously a trade-off here. The reason you wanted

to use statistics in the first place was to avoid having to go to the

bother and expense of collecting lots of data, but if you collect more

data, your statistics will probably be more accurate.
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The t-distribution

The central limit theorem tells us about the relationship between

the sampling distribution of means and the original population.

Notice that if we want to know the variance of the sampling

distribution we need to know the variance of the original

population. You do not need to know the variance of the sampling

distribution to make a point estimate of the mean, but other, more

elaborate, estimation techniques require that you either know or

estimate the variance of the population. If you reflect for a moment,

you will realize that it would be strange to know the variance of

the population when you do not know the mean. Since you need

to know the population mean to calculate the population variance

and standard deviation, the only time when you would know the

population variance without the population mean are examples and

problems in textbooks. The usual case occurs when you have to

estimate both the population variance and mean. Statisticians have

figured out how to handle these cases by using the sample variance

as an estimate of the population variance (and using that to estimate

the variance of the sampling distribution). Remember that is an

unbiased estimator of σ2. Remember, too, that the variance of the

sampling distribution of means is related to the variance of the

original population according to the equation:

So the estimated standard deviation of a sampling distribution of

means is:

Following this thought, statisticians found that if they took

samples of a constant size from a normal population, computed

a statistic called a t-score for each sample, and put those into a

relative frequency distribution, the distribution would be the same

for samples of the same size drawn from any normal population.

The shape of this sampling distribution of t’s varies somewhat as

sample size varies, but for any n, it’s always the same. For example,
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for samples of 5, 90% of the samples have t-scores between -1.943

and +1.943, while for samples of 15, 90% have t-scores between ±

1.761. The bigger the samples, the narrower the range of scores that

covers any particular proportion of the samples. That t-score is

computed by the formula:

By comparing the formula for the t-score with the formula for

the z-score, you will be able to see that the t is just an estimated

z. Since there is one t-score for each sample, the t is just another

sampling distribution. It turns out that there are other things that

can be computed from a sample that have the same distribution

as this t. Notice that we’ve used the sample standard deviation,

s, in computing each t-score. Since we’ve used s, we’ve used up

one degree of freedom. Because there are other useful sampling

distributions that have this same shape, but use up various numbers

of degrees of freedom, it is the usual practice to refer to the t-

distribution not as the distribution for a particular sample size, but

as the distribution for a particular number of degrees of freedom

(df). There are published tables showing the shapes of the t-

distributions, and they are arranged by degrees of freedom so that

they can be used in all situations.

Looking at the formula, you can see that the mean t-score will be

zero since the mean x equals μ. Each t-distribution is symmetric,

with half of the t-scores being positive and half negative because we

know from the central limit theorem that the sampling distribution

of means is normal, and therefore symmetric, when the original

population is normal.

An excerpt from a typical t-table is shown in Table 2.2. Note that

there is one line each for various degrees of freedom. Across the

top are the proportions of the distributions that will be left out in

the tail–the amount shaded in the picture. The body of the table

shows which t-score divides the bulk of the distribution of t’s for

that df from the area shaded in the tail, which t-score leaves that

proportion of t’s to its right. For example, if you chose all of the

possible samples with 9 df, and found the t-score for each, .025 (2
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1/2 %) of those samples would have t-scores greater than 2.262, and

.975 would have t-scores less than 2.262.

Table 2.2 A Sampling of a Student’s t-Table

df prob = .10 prob = .05 prob – .025 prob = .01 prob = .005

1 3.078 6.314 12.70 13.81 63.65

5 1.476 2.015 2.571 3.365 4.032

6 1.440 1.943 2.447 3.143 3.707

7 1.415 1.895 2.365 2.998 3.499

8 1.397 1.860 2.306 2.896 3.355

9 1.383 1.833 2.262 2.821 3.250

10 1.372 1.812 2.228 2.764 3.169

20 1.325 1.725 2.086 2.528 2.845

30 1.310 1.697 2.046 2.457 2.750

40 1.303 1.684 2.021 2.423 2.704

Infinity 1.282 1.645 1.960 2.326 2.58

In Table 2.2, a sampling of a student’s t-table, it shows the

probability of exceeding the value in the body. With 5 df, there is a

.05 probability that a sample will have a t-score > 2.015.

For a more interactive t-table, along with the t-distribution,

follow the Excel template in Figure 2.3. You can simply change the

values in the yellow cells to see the cut-off point of the t-table, and

its associated distribution.

An interactive or media element has been excluded

from this version of the text. You can view it online

here: https://pressbooks.nscc.ca/

introductorybusinessstatistics/?p=23
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Figure 2.3 Interactive Excel Template of a t-Table – see Appendix 2.

Since the t-distributions are symmetric, if 2 1/2% (.025) of the t’s

with 9 df are greater than 2.262, then 2 1/2% are less than -2.262.

The middle 95% (.95) of the t’s, when there are 9 df, are between

-2.262 and +2.262. The middle .90 of t-scores when there are 14 df

are between ±1.761, because -1.761 leaves .05 in the left tail and +1.761

leaves .05 in the right tail. The t-distribution gets closer and closer

to the normal distribution as the number of degrees of freedom

rises. As a result, the last line in the t-table, for infinity df, can also

be used to find the z-scores that leave different proportions of the

sample in the tail.

What could Kevin have done if he had been asked, “How much

does a pack of 24 beer bottles weigh?” and could not easily find

good data on the population? Since he knows statistics, he could

take a sample and make an inference about the population mean.

Because the distribution of weights of packs of 24 beer bottles is the

result of a manufacturing process, it is almost certainly normal. The

characteristics of almost every manufactured product are normally

distributed. In a manufacturing process, even one that is precise

and well controlled, each individual piece varies slightly as the

temperature varies somewhat, the strength of the power varies as

other machines are turned on and off, the consistency of the raw

material varies slightly, and dozens of other forces that affect the

final outcome vary slightly. Most of the packs, or bolts, or whatever

is being manufactured, will be very close to the mean weight, or

size, with just as many a little heavier or larger as there are a

little lighter or smaller. Even though the process is supposed to

be producing a population of “identical” items, there will be some

variation among them. This is what causes so many populations

to be normally distributed. Because the distribution of weights is

normal, Kevin can use the t-table to find the shape of the

distribution of sample t-scores. Because he can use the t-table to

tell him about the shape of the distribution of sample t-scores, he
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can make a good inference about the mean weight of a pack of 24

beer bottles. This is how he could make that inference:

STEP 1. Take a sample of n, say 15, packs of beer bottles and

carefully weigh each pack.

STEP 2. Find x and s for the sample.

STEP 3 (where the tricky part starts). Look at the t-table, and find

the t-scores that leave some proportion, say .95, of sample t’s with

n-1 df in the middle.

STEP 4 (the heart of the tricky part). Assume that the sample has

a t-score that is in the middle part of the distribution of t-scores.

STEP 5 (the arithmetic). Take the x, s, n, and t’s from the t-table,

and set up two equations, one for each of the two table t-values.

When he solves each of these equations for μ, he will find an interval

that he is 95% sure (a statistician would say “with .95 confidence”)

contains the population mean.

Kevin decides this is the way he will answer the question. His

sample contains packs of beers with weights of:

16.25, 15.89, 16.25, 16.35, 15.9, 16.25, 15.85, 16.12, 17.16, 18.17, 14.15,

16.25, 17.025, 16.2, 17.025

He finds his sample mean, x = 16.32 kilograms, and his sample

standard deviation (remembering to use the sample formula), s = .87

kilograms. The t-table tells him that .95 of sample t’s with 14 df are

between ±2.145. He solves these two equations for μ:

finding μ= 15.82 kilograms and μ= 16.82 kilograms. With these

results, Kevin can report that he is “95 per cent sure that the mean

weight of a pack of 24 beer bottles is between 15.82 and 16.82

kilograms”. Notice that this is different from when he knew more

about the population in the previous example.

Summary

A lot of material has been covered in this chapter, and not much of
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it has been easy. We are getting into real statistics now, and it will

require care on your part if you are going to keep making sense of

statistics.

The chapter outline is simple:

• Many things are distributed the same way, at least once we’ve

standardized the members’ values into z-scores.

• The central limit theorem gives users of statistics a lot of

useful information about how the sampling distribution of x is

related to the original population of x’s.

• The t-distribution lets us do many of the things the central

limit theorem permits, even when the variance of the

population, sx, is not known.

We will soon see that statisticians have learned about other

sampling distributions and how to use them to make inferences

about populations from samples. It is through these known

sampling distributions that most statistics is done. It is these known

sampling distributions that give us the link between the sample we

have and the population that we want to make an inference about.
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3. Chapter 3. Making
Estimates

The most basic kind of inference about a population is an estimate

of the location (or shape) of a distribution. The central limit
theorem says that the sample mean is an unbiased estimator of the

population mean and can be used to make a single point inference

of the population mean. While making this kind of inference will give

you the correct estimate on average, it seldom gives you exactly the

correct estimate. As an alternative, statisticians have found out how

to estimate an interval that almost certainly contains the population

mean. In the next few pages, you will learn how to make three

different inferences about a population from a sample. You will

learn how to make interval estimates of the mean, the proportion

of members with a certain characteristic, and the variance. Each of

these procedures follows the same outline, yet each uses a different

sampling distribution to link the sample you have chosen with the

population you are trying to learn about.

Estimating the population mean

Though the sample mean is an unbiased estimator of the population

mean, very few samples have a mean exactly equal to the population

mean. Though few samples have a mean exactly equal to the

population mean m, the central limit theorem tells us that most

samples have a mean that is close to the population mean. As a

result, if you use the central limit theorem to estimate μ, you will

seldom be exactly right, but you will seldom be far wrong.

Statisticians have learned how often a point estimate will be how

wrong. Using this knowledge you can find an interval, a range of
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values that probably contains the population mean. You even get to

choose how great a probability you want to have, though to raise the

probability, the interval must be wider.

Most of the time, estimates are interval estimates. When you

make an interval estimate, you can say, “I am z per cent sure that the

mean of this population is between x and y“. Quite often, you will

hear someone say that they have estimated that the mean is some

number “± so much”. What they have done is quoted the midpoint

of the interval for the “some number”, so that the interval between x

and y can then be split in half with + “so much” above the midpoint

and – “so much” below. They usually do not tell you that they are

only “z per cent sure”. Making such an estimate is not hard— it is

what Kevin did at the end of the last chapter. It is worth your while

to go through the steps carefully now, because the same basic steps

are followed for making any interval estimate.

In making any interval estimate, you need to use a sampling

distribution. In making an interval estimate of the population mean,

the sampling distribution you use is the t-distribution.

The basic method is to pick a sample and then find the range

of population means that would put your sample’s t-score in the

central part of the t-distribution. To make this a little clearer, look

at the formula for t:

where n is your sample’s size and x and s are computed from your

sample. μ is what you are trying to estimate. From the t-table, you

can find the range of t-scores that include the middle 80 per cent,

or 90 per cent, or whatever per cent, for n-1 degrees of freedom.

Choose the percentage you want and use the table. You now have

the lowest and highest t-scores, x, s, and n. You can then substitute

the lowest t-score into the equation and solve for μ to find one

of the limits for μ if your sample’s t-score is in the middle of the

distribution. Then substitute the highest t-score into the equation,

and find the other limit. Remember that you want two μ’s because

you want to be able to say that the population mean is between two

numbers.
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The two t-scores are almost always ± the same number. The only

heroic thing you have done is to assume that your sample has a

t-score that is “in the middle” of the distribution. As long as your

sample meets that assumption, the population mean will be within

the limits of your interval. The probability part of your interval

estimate, “I am z per cent sure that the mean is between…”, or “with

z confidence, the mean is between…”, comes from how much of the

t-distribution you want to include as “in the middle”. If you have a

sample of 25 (so there are 24 df), looking at the table you will see that

.95 of all samples of 25 will have a t-score between ±2.064; that also

means that for any sample of 25, the probability that its t is between

±2.064 is .95.

As the probability goes up, the range of t-scores necessary to

cover the larger proportion of the sample gets larger. This makes

sense. If you want to improve the chance that your interval contains

the population mean, you could simply choose a wider interval. For

example, if your sample mean was 15, sample standard deviation

was 10, and sample size was 25, to be .95 sure you were correct,

you would need to base your mean on t-scores of ±2.064. Working

through the arithmetic gives you an interval from 10.872 to 19.128.

To have .99 confidence, you would need to base your interval on

t-scores of ±2.797. Using these larger t-scores gives you a wider

interval, one from 9.416 to 20.584. This trade-off between precision

(a narrower interval is more precise) and confidence (probability of

being correct), occurs in any interval estimation situation. There is

also a trade-off with sample size. Looking at the t-table, note that

the t-scores for any level of confidence are smaller when there are

more degrees of freedom. Because sample size determines degrees

of freedom, you can make an interval estimate for any level of

confidence more precise if you have a larger sample. Larger samples

are more expensive to collect, however, and one of the main reasons

we want to learn statistics is to save money. There is a three-way

trade-off in interval estimation between precision, confidence, and

cost.

At Delta Beer Company in British Columbia, the director of human
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resources has become concerned that the hiring practices

discriminate against older workers. He asks Kevin to look into the

age at which new workers are hired, and Kevin decides to find the

average age at hiring. He goes to the personnel office and finds out

that over 2,500 different people have worked at this company in

the past 15 years. In order to save time and money, Kevin decides

to make an interval estimate of the mean age at date of hire. He

decides that he wants to make this estimate with .95 confidence.

Going into the personnel files, Kevin chooses 30 folders and records

the birth date and date of hiring from each. He finds the age at

hiring for each person, and computes the sample mean and

standard deviation, finding x = 24.71 years and s = 2.13 years. Going

to the t-table, he finds that .95 of t-scores with df=29 are between

±2.045. You can alternatively use the interactive Excel template in

Figure 3.1 to find the same value for t-scores. In doing this, you

can enter df=29 and choose alpha=.025. The reason you select .025

is that Kevin is constructing an interval estimate of the mean age.

Therefore, the actual value of alpha to find out the correct t-score

is .025=(1-.95)/2.

An interactive or media element has been excluded

from this version of the text. You can view it online

here: https://pressbooks.nscc.ca/

introductorybusinessstatistics/?p=27

Figure 3.1 Interactive Excel Template for Determining the t-Values

Cut-off Point – see Appendix 3.

He solves two equations:

and finds that the limits to his interval are 23.91 and 25.51. Kevin
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tells the HR director: “With .95 confidence, the mean age at date of

hire is between 23.91 years and 25.51 years.”

Estimating the population proportion

There are many times when you, or your boss, will want to estimate

the proportion of a population that has a certain characteristic.

The best known examples are political polls when the proportion

of voters who would vote for a certain candidate is estimated. This

is a little trickier than estimating a population mean. It should only

be done with large samples, and adjustments should be made under

various conditions. We will cover the simplest case here, assuming

that the population is very large, the sample is large, and that once

a member of the population is chosen to be in the sample, it is

replaced so that it might be chosen again. Statisticians have found

that, when all of the assumptions are met, there is a sample statistic

that follows the standard normal distribution. If all of the possible

samples of a certain size are chosen, and for each sample the

proportion of the sample with a certain characteristic, p, is found, a

z-statistic can then be computed using the formula:

where π = proportion of population with the characteristic and

will be distributed normally. Looking at the bottom line of the t-

table, .90 of these z’s will be between ±1.645, .99 will be between

±2.326, etc.

Because statisticians know that the z-scores found from samples

will be distributed normally, you can make an interval estimate of

the proportion of the population with the characteristic. This is

simple to do, and the method is parallel to that used to make an

interval estimate of the population mean: (1) choose the sample, (2)

find the sample p, (3) assume that your sample has a z-score that
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is not in the tails of the sampling distribution, (4) using the sample

p as an estimate of the population π in the denominator and the

table z-values for the desired level of confidence, solve twice to find

the limits of the interval that you believe contains the population

proportion p.

At the Delta Beer Company, the director of human resources also

asked Ann Howard to look into the age at hiring at the plant. Ann

takes a different approach than Kevin and decides to investigate

what proportion of new hires were at least 35. She looks at the

personnel records and, like Kevin, decides to make an inference

from a sample after finding that over 2,500 different people have

worked at this company at some time in the last 15 years. She

chooses 100 personnel files, replacing each file after she has

recorded the age of the person at hiring. She finds 17 who were 35

or older when they first worked at the Delta Beer Company. She

decides to make her inference with .95 confidence, and from the last

line of the t-table finds that .95 of z-scores lie between ±1.96. She

finds her upper and lower bounds:

and she finds the other boundary:
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She concludes, that with .95 confidence, the proportion of people

who have worked at Delta Beer Company who were over 35 when

hired is between .095 and .245. This is a fairly wide interval. Looking

at the equation for constructing the interval, you should be able to

see that a larger sample size will result in a narrower interval, just as

it did when estimating the population mean.

Estimating population variance

Another common interval estimation task is to estimate the

variance of a population. High quality products not only need to

have the proper mean dimension, the variance should be small. The

estimation of population variance follows the same strategy as the

other estimations. By choosing a sample and assuming that it is

from the middle of the population, you can use a known sampling

distribution to find a range of values that you are confident contains

the population variance. Once again, we will use a sampling

distribution that statisticians have discovered forms a link between

samples and populations.

Take a sample of size n from a normal population with known

variance, and compute a statistic called χ2 (pronounced chi square)

for that sample using the following formula:

You can see that χ2 will always be positive, because both the

numerator and denominator will always be positive. Thinking it

through a little, you can also see that as n gets larger, χ2 will

generally be larger since the numerator will tend to be larger as

more and more (x – x)2 are summed together. It should not be too

surprising by now to find out that if all of the possible samples of

a size n are taken from any normal population, χ2 is computed for

48 | Chapter 3. Making Estimates



each sample, and those χ2 are arranged into a relative frequency

distribution, the distribution is always the same.

Because the size of the sample obviously affects χ2, there is a

different distribution for each different sample size. There are other

sample statistics that are distributed like χ2, so, like the t-

distribution, tables of the χ2 distribution are arranged by degrees

of freedom so that they can be used in any procedure where

appropriate. As you might expect, in this procedure, df = n-1. A

portion of a χ2 table is reproduced below in Figure 3.2. You can use

the following interactive Excel template to find the cut-off point

for χ2. In this template, you have a choice to enter df and select

the upper tail of the distribution; the appropriate χ2 will be created

along with its graph.

An interactive or media element has been excluded

from this version of the text. You can view it online

here: https://pressbooks.nscc.ca/

introductorybusinessstatistics/?p=27

Figure 3.2 Interactive Excel Template for Determining the χ2 Cut-

off Point – see Appendix 3.

Variance is important in quality control because you want your

product to be consistently the same. The quality control manager of

Delta Beer Company, Peter, has just returned from a seminar called

“Quality Beer, Quality Profits”. He learned something about variance

and has asked Kevin to measure the variance of the volume of the

beer bottles produced by Delta. Kevin decides that he can fulfill

this request by taking random samples directly from the production

line. Kevin knows that the sample variance is an unbiased estimator

of the population variance, but he decides to produce an interval

estimate of the variance of the volume of beer bottles. He also
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decides that .90 confidence will be good until he finds out more

about what Peter wants.

Kevin goes and finds the data for the volume of 15 randomly

selected bottles of beer, and then gets ready to use the χ2

distribution to make a .90 confidence interval estimate of the

variance of the volume of the beer bottles. His collected data are

shown below in millilitres:

370.12, 369.25, 372.15, 370.14, 367.5, 369.54, 371.15, 369.36, 370.4,

368.95, 372.4, 370, 368.59, 369.12, 370.25

With his sample of 15 bottles, he will have 14 df Using the Excel

template in Figure 3.2 above, he simply enters .05 with 14 df one

time, and .975 with the same df another time in the yellow cells. He

will find that .95 of χ2 are greater than 6.571 and only .05 are greater

than 23.685 when there are 14 df This means that .90 are between

6.57 and 23.7. Assuming that his sample has a χ2 that is in the middle

.90, Kevin gets ready to compute the limits of his interval. This time

Kevin uses the Excel spreadsheet’s built-in functions to calculate

variance and standard deviation of the sample data. He uses both

VAR.S, and STDEV.S. to calculate both sample variance and standard

deviation. He comes up with 1.66 as sample variance, and 1.29 mL as

his sample standard deviation.

Kevin then takes the χ2 formula and solves it twice, once by

setting χ2 equal to 6.57:

Solving for σ2, he finds one limit for his interval is .253. He solves

the second time by setting χ2 equal to 23.685:

and find that the other limit is .07. Armed with his data, Kevin

reports to the quality control manager that “with .90 confidence,

the variance of volume of bottles of beer is between .07 and .253”.
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Summary

What does this confidence stuff mean anyway? In the example we

did earlier, Ann found that “with .95 confidence…” What exactly

does “with .95 confidence” mean? The easiest way to understand

this is to think about the assumption that Ann had made that she

had a sample with a z-score that was not in the tails of the sampling

distribution. More specifically, she assumed that her sample had a

z-score between ±1.96; that it was in the middle 95 per cent of z-

scores. Her assumption is true 95% of the time because 95% of z-

scores are between ±1.96. If Ann did this same estimate, including

drawing a new sample, over and over, in .95 of those repetitions, the

population proportion would be within the interval because in .95

of the samples the z-score would be between ±1.96. In .95 of the

repetitions, her estimate would be right.
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4. Chapter 4. Hypothesis
Testing

Hypothesis testing is the other widely used form of inferential

statistics. It is different from estimation because you start a

hypothesis test with some idea of what the population is like and

then test to see if the sample supports your idea. Though the

mathematics of hypothesis testing is very much like the

mathematics used in interval estimation, the inference being made

is quite different. In estimation, you are answering the question,

“What is the population like?” While in hypothesis testing you are

answering the question, “Is the population like this or not?”

A hypothesis is essentially an idea about the population that you

think might be true, but which you cannot prove to be true. While

you usually have good reasons to think it is true, and you often

hope that it is true, you need to show that the sample data support

your idea. Hypothesis testing allows you to find out, in a formal

manner, if the sample supports your idea about the population.

Because the samples drawn from any population vary, you can never

be positive of your finding, but by following generally accepted

hypothesis testing procedures, you can limit the uncertainty of your

results.

As you will learn in this chapter, you need to choose between

two statements about the population. These two statements are the

hypotheses. The first, known as the null hypothesis, is basically,

“The population is like this.” It states, in formal terms, that the

population is no different than usual. The second, known as the

alternative hypothesis, is, “The population is like something else.” It

states that the population is different than the usual, that something

has happened to this population, and as a result it has a different

mean, or different shape than the usual case. Between the two

hypotheses, all possibilities must be covered. Remember that you
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are making an inference about a population from a sample. Keeping

this inference in mind, you can informally translate the two

hypotheses into “I am almost positive that the sample came from

a population like this” and “I really doubt that the sample came

from a population like this, so it probably came from a population

that is like something else”. Notice that you are never entirely sure,

even after you have chosen the hypothesis, which is best. Though

the formal hypotheses are written as though you will choose with

certainty between the one that is true and the one that is false, the

informal translations of the hypotheses, with “almost positive” or

“probably came”, is a better reflection of what you actually find.

Hypothesis testing has many applications in business, though few

managers are aware that that is what they are doing. As you will

see, hypothesis testing, though disguised, is used in quality control,

marketing, and other business applications. Many decisions are

made by thinking as though a hypothesis is being tested, even

though the manager is not aware of it. Learning the formal details

of hypothesis testing will help you make better decisions and better

understand the decisions made by others.

The next section will give an overview of the hypothesis testing

method by following along with a young decision-maker as he uses

hypothesis testing. Additionally, with the provided interactive Excel

template, you will learn how the results of the examples from this

chapter can be adjusted for other circumstances. The final section

will extend the concept of hypothesis testing to categorical data,

where we test to see if two categorical variables are independent

of each other. The rest of the chapter will present some specific

applications of hypothesis tests as examples of the general method.

The strategy of hypothesis testing

Usually, when you use hypothesis testing, you have an idea that the

world is a little bit surprising; that it is not exactly as conventional
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wisdom says it is. Occasionally, when you use hypothesis testing,

you are hoping to confirm that the world is not surprising, that it

is like conventional wisdom predicts. Keep in mind that in either

case you are asking, “Is the world different from the usual, is it

surprising?” Because the world is usually not surprising and because

in statistics you are never 100 per cent sure about what a sample

tells you about a population, you cannot say that your sample

implies that the world is surprising unless you are almost positive

that it does. The dull, unsurprising, usual case not only wins if there

is a tie, it gets a big lead at the start. You cannot say that the world

is surprising, that the population is unusual, unless the evidence is

very strong. This means that when you arrange your tests, you have

to do it in a manner that makes it difficult for the unusual, surprising

world to win support.

The first step in the basic method of hypothesis testing is to

decide what value some measure of the population would take if

the world was unsurprising. Second, decide what the sampling

distribution of some sample statistic would look like if the

population measure had that unsurprising value. Third, compute

that statistic from your sample and see if it could easily have come

from the sampling distribution of that statistic if the population was

unsurprising. Fourth, decide if the population your sample came

from is surprising because your sample statistic could not easily

have come from the sampling distribution generated from the

unsurprising population.

That all sounds complicated, but it is really pretty simple. You

have a sample and the mean, or some other statistic, from that

sample. With conventional wisdom, the null hypothesis that the

world is dull, and not surprising, tells you that your sample comes

from a certain population. Combining the null hypothesis with what

statisticians know tells you what sampling distribution your sample

statistic comes from if the null hypothesis is true. If you are almost

positive that the sample statistic came from that sampling

distribution, the sample supports the null. If the sample statistic

“probably came” from a sampling distribution generated by some
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other population, the sample supports the alternative hypothesis

that the population is “like something else”.

Imagine that Thad Stoykov works in the marketing department

of Pedal Pushers, a company that makes clothes for bicycle riders.

Pedal Pushers has just completed a big advertising campaign in

various bicycle and outdoor magazines, and Thad wants to know

if the campaign has raised the recognition of the Pedal Pushers

brand so that more than 30 per cent of the potential customers

recognize it. One way to do this would be to take a sample of

prospective customers and see if at least 30 per cent of those in

the sample recognize the Pedal Pushers brand. However, what if the

sample is small and just barely 30 per cent of the sample recognizes

Pedal Pushers? Because there is variance among samples, such a

sample could easily have come from a population in which less than

30 per cent recognize the brand. If the population actually had

slightly less than 30 per cent recognition, the sampling distribution

would include quite a few samples with sample proportions a little

above 30 per cent, especially if the samples are small. In order

to be comfortable that more than 30 per cent of the population

recognizes Pedal Pushers, Thad will want to find that a bit more

than 30 per cent of the sample does. How much more depends on

the size of the sample, the variance within the sample, and how

much chance he wants to take that he’ll conclude that the campaign

did not work when it actually did.

Let us follow the formal hypothesis testing strategy along with

Thad. First, he must explicitly describe the population his sample

could come from in two different cases. The first case is the

unsurprising case, the case where there is no difference between

the population his sample came from and most other populations.

This is the case where the ad campaign did not really make a

difference, and it generates the null hypothesis. The second case is

the surprising case when his sample comes from a population that is

different from most others. This is where the ad campaign worked,

and it generates the alternative hypothesis. The descriptions of

these cases are written in a formal manner. The null hypothesis is
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usually called Ho. The alternative hypothesis is called either H1 or

Ha. For Thad and the Pedal Pushers marketing department, the null

hypothesis will be:

Ho: proportion of the population recognizing Pedal Pushers brand

< .30

and the alternative will be:

Ha: proportion of the population recognizing Pedal Pushers brand

>.30

Notice that Thad has stacked the deck against the campaign

having worked by putting the value of the population proportion

that means that the campaign was successful in the alternative

hypothesis. Also notice that between Ho and Ha all possible values

of the population proportion (>, =, and < .30) have been covered.

Second, Thad must create a rule for deciding between the two

hypotheses. He must decide what statistic to compute from his

sample and what sampling distribution that statistic would come

from if the null hypothesis, Ho, is true. He also needs to divide

the possible values of that statistic into usual and unusual ranges

if the null is true. Thad’s decision rule will be that if his sample

statistic has a usual value, one that could easily occur if Ho is true,

then his sample could easily have come from a population like that

which described Ho. If his sample’s statistic has a value that would

be unusual if Ho is true, then the sample probably comes from a

population like that described in Ha. Notice that the hypotheses and

the inference are about the original population while the decision

rule is about a sample statistic. The link between the population

and the sample is the sampling distribution. Knowing the relative

frequency of a sample statistic when the original population has a

proportion with a known value is what allows Thad to decide what

are usual and unusual values for the sample statistic.

The basic idea behind the decision rule is to decide, with the

help of what statisticians know about sampling distributions, how

far from the null hypothesis’ value for the population the sample

value can be before you are uncomfortable deciding that the sample

comes from a population like that hypothesized in the null. Though
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the hypotheses are written in terms of descriptive statistics about

the population—means, proportions, or even a distribution of

values—the decision rule is usually written in terms of one of the

standardized sampling distributions—the t, the normal z, or another

of the statistics whose distributions are in the tables at the back of

statistics textbooks. It is the sampling distributions in these tables

that are the link between the sample statistic and the population in

the null hypothesis. If you learn to look at how the sample statistic

is computed you will see that all of the different hypothesis tests

are simply variations on a theme. If you insist on simply trying to

memorize how each of the many different statistics is computed,

you will not see that all of the hypothesis tests are conducted in

a similar manner, and you will have to learn many different things

rather than the variations of one thing.

Thad has taken enough statistics to know that the sampling

distribution of sample proportions is normally distributed with a

mean equal to the population proportion and a standard deviation

that depends on the population proportion and the sample size.

Because the distribution of sample proportions is normally

distributed, he can look at the bottom line of a t-table and find

out that only .05 of all samples will have a proportion more than

1.645 standard deviations above .30 if the null hypothesis is true.

Thad decides that he is willing to take a 5 per cent chance that

he will conclude that the campaign did not work when it actually

did. He therefore decides to conclude that the sample comes from

a population with a proportion greater than .30 that has heard of

Pedal Pushers, if the sample’s proportion is more than 1.645

standard deviations above .30. After doing a little arithmetic (which

you’ll learn how to do later in the chapter), Thad finds that his

decision rule is to decide that the campaign was effective if the

sample has a proportion greater than .375 that has heard of Pedal

Pushers. Otherwise the sample could too easily have come from a

population with a proportion equal to or less than .30.
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Table 4.1 The Bottom Line of a
t-Table, Showing the Normal

Distribution

alpha .1 .05 .03 .01

df infinity 1.28 1.65 1.96 2.33

The final step is to compute the sample statistic and apply the

decision rule. If the sample statistic falls in the usual range, the data

support Ho, the world is probably unsurprising, and the campaign

did not make any difference. If the sample statistic is outside the

usual range, the data support Ha, the world is a little surprising,

and the campaign affected how many people have heard of Pedal

Pushers. When Thad finally looks at the sample data, he finds that

.39 of the sample had heard of Pedal Pushers. The ad campaign was

successful!

A straightforward example: testing for
goodness-of-fit

There are many different types of hypothesis tests, including many

that are used more often than the goodness-of-fit test. This test

will be used to help introduce hypothesis testing because it gives a

clear illustration of how the strategy of hypothesis testing is put to

use, not because it is used frequently. Follow this example carefully,

concentrating on matching the steps described in previous sections

with the steps described in this section. The arithmetic is not that

important right now.

We will go back to Chapter 1, where the Chargers’ equipment

manager, Ann, at Camosun College, collected some data on the size

of the Chargers players’ sport socks. Recall that she asked both

the basketball and volleyball team managers to collect these data,

shown in Table 4.2.

David, the marketing manager of the company that produces
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these socks, contacted Ann to tell her that he is planning to send

out some samples to convince the Chargers players that wearing

Easy Bounce socks will be more comfortable than wearing other

socks. He needs to include an assortment of sizes in those packages

and is trying to find out what sizes to include. The Production

Department knows what mix of sizes they currently produce, and

Ann has collected a sample of 97 basketball and volleyball players’

sock sizes. David needs to test to see if his sample supports the

hypothesis that the collected sample from Camosun college players

has the same distribution of sock sizes as the company is currently

producing. In other words, is the distribution of Chargers players’

sock sizes a good fit to the distribution of sizes now being produced

(see Table 4.2)?

Table 4.2 Frequency of Sock Sizes
Worn by Basketball and Volleyball

Players

Size Frequency Relative Frequency

6 3 .031

7 24 .247

8 33 .340

9 20 .206

10 17 .175

From the Production Department, the current relative frequency

distribution of Easy Bounce socks in production is shown in Table

4.3.
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Table 4.3 Relative
Frequency Distribution of

Easy Bounce Socks in
Production

Size Relative Frequency

6 .06

7 .13

8 .22

9 .3

10 .26

11 .03

If the world is unsurprising, the players will wear the socks sized

in the same proportions as other athletes, so David writes his

hypotheses:

Ho: Chargers players’ sock sizes are distributed just like current

production.

Ha: Chargers players’ sock sizes are distributed differently.

Ann’s sample has n=97. By applying the relative frequencies in

the current production mix, David can find out how many players

would be expected to wear each size if the sample was perfectly

representative of the distribution of sizes in current production.

This would give him a description of what a sample from the

population in the null hypothesis would be like. It would show what

a sample that had a very good fit with the distribution of sizes in the

population currently being produced would look like.

Statisticians know the sampling distribution of a statistic

that compares the expected frequency of a sample with the actual,

or observed, frequency. For a sample with c different classes (the

sizes here), this statistic is distributed like χ2 with c-1 df. The χ2 is

computed by the formula:

where

O = observed frequency in the sample in this class

E = expected frequency in the sample in this class
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The expected frequency, E, is found by multiplying the relative

frequency of this class in the Ho hypothesized population by the

sample size. This gives you the number in that class in the sample if

the relative frequency distribution across the classes in the sample

exactly matches the distribution in the population.

Notice that χ2 is always > 0 and equals 0 only if the observed is

equal to the expected in each class. Look at the equation and make

sure that you see that a larger value of χ2 goes with samples with

large differences between the observed and expected frequencies.

David now needs to come up with a rule to decide if the data

support Ho or Ha. He looks at the table and sees that for 5 df (there

are 6 classes—there is an expected frequency for size 11 socks), only

.05 of samples drawn from a given population will have a χ2 > 11.07

and only .10 will have a χ2 > 9.24. He decides that it would not be

all that surprising if the players had a different distribution of sock

sizes than the athletes who are currently buying Easy Bounce, since

all of the players are women and many of the current customers

are men. As a result, he uses the smaller .10 value of 9.24 for his

decision rule. Now David must compute his sample χ2. He starts by

finding the expected frequency of size 6 socks by multiplying the

relative frequency of size 6 in the population being produced by 97,

the sample size. He gets E = .06*97=5.82. He then finds O-E = 3-5.82

= -2.82, squares that, and divides by 5.82, eventually getting 1.37. He

then realizes that he will have to do the same computation for the

other five sizes, and quickly decides that a spreadsheet will make

this much easier (see Table 4.4).
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Table 4.4 David’s Excel Sheet

Sock
Size

Frequency
in Sample

Population
Relative
Frequency

Expected
Frequency =
97*C

(O-E)^2/
E

6 3 .06 5.82 1.3663918

7 24 .13 12.61 10.288033

8 33 .22 21.34 6.3709278

9 20 .3 29.1 2.8457045

10 17 .26 25.22 2.6791594

11 0 .03 2.91 2.91

97 χ2 =
26.460217

David performs his third step, computing his sample statistic, using

the spreadsheet. As you can see, his sample χ2 = 26.46, which is well

into the unusual range that starts at 9.24 according to his decision

rule. David has found that his sample data support the hypothesis

that the distribution of sock sizes of the players is different from the

distribution of sock sizes that are currently being manufactured. If

David’s employer is going to market Easy Bounce socks to the BC

college players, it is going to have to send out packages of samples

that contain a different mix of sizes than it is currently making.

If Easy Bounce socks are successfully marketed to the BC

college players, the mix of sizes manufactured will have to be

altered.

Now review what David has done to test to see if the data in

his sample support the hypothesis that the world is unsurprising

and that the players have the same distribution of sock sizes as the

manufacturer is currently producing for other athletes. The essence

of David’s test was to see if his sample χ2 could easily have come

from the sampling distribution of χ2’s generated by taking samples

from the population of socks currently being produced. Since his

sample χ2 would be way out in the tail of that sampling distribution,

he judged that his sample data supported the other hypothesis, that
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there is a difference between the Chargers players and the athletes

who are currently buying Easy Bounce socks.

Formally, David first wrote null and alternative hypotheses,

describing the population his sample comes from in two different

cases. The first case is the null hypothesis; this occurs if the players

wear socks of the same sizes in the same proportions as the

company is currently producing. The second case is the alternative

hypothesis; this occurs if the players wear different sizes. After he

wrote his hypotheses, he found that there was a sampling

distribution that statisticians knew about that would help him

choose between them. This is the χ2 distribution. Looking at the

formula for computing χ2 and consulting the tables, David decided

that a sample χ2 value greater than 9.24 would be unusual if his

null hypothesis was true. Finally, he computed his sample statistic

and found that his χ2, at 26.46, was well above his cut-off value.

David had found that the data in his sample supported the

alternative χ2: that the distribution of the players’ sock sizes is

different from the distribution that the company is currently

manufacturing. Acting on this finding, David will include a different

mix of sizes in the sample packages he sends to team coaches.

Testing population proportions

As you learned in Chapter 3, sample proportions can be used to

compute a statistic that has a known sampling distribution.

Reviewing, the z-statistic is:

where

p = the proportion of the sample with a certain characteristic

π = the proportion of the population with that characteristic
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= the standard deviation (error) of the

proportion of the population with that characteristic

As long as the two technical conditions of π*n and (1-π)*n are

held, these sample z-statistics are distributed normally so that by

using the bottom line of the t-table, you can find what portion of

all samples from a population with a given population proportion, π,

have z-statistics within different ranges. If you look at the z-table,

you can see that .95 of all samples from any population have z-

statistics between ±1.96, for instance.

If you have a sample that you think is from a population containing

a certain proportion, π, of members with some characteristic, you

can test to see if the data in your sample support what you think.

The basic strategy is the same as that explained earlier in this

chapter and followed in the goodness-of-fit example: (a) write two

hypotheses, (b) find a sample statistic and sampling distribution that

will let you develop a decision rule for choosing between the two

hypotheses, and (c) compute your sample statistic and choose the

hypothesis supported by the data.

Foothill Hosiery recently received an order for children’s socks

decorated with embroidered patches of cartoon characters. Foothill

did not have the right machinery to sew on the embroidered

patches and contracted out the sewing. While the order was filled

and Foothill made a profit on it, the sewing contractor’s price

seemed high, and Foothill had to keep pressure on the contractor

to deliver the socks by the date agreed upon. Foothill’s CEO, John

McGrath, has explored buying the machinery necessary to allow

Foothill to sew patches on socks themselves. He has discovered that

if more than a quarter of the children’s socks they make are ordered

with patches, the machinery will be a sound investment. John asks

Kevin to find out if more than 35 per cent of children’s socks are

being sold with patches.

Kevin calls the major trade organizations for the hosiery,

embroidery, and children’s clothes industries, and no one can
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answer his question. Kevin decides it must be time to take a sample

and test to see if more than 35 per cent of children’s socks are

decorated with patches. He calls the sales manager at Foothill, and

she agrees to ask her salespeople to look at store displays of

children’s socks, counting how many pairs are displayed and how

many of those are decorated with patches. Two weeks later, Kevin

gets a memo from the sales manager, telling him that of the 2,483

pairs of children’s socks on display at stores where the salespeople

counted, 826 pairs had embroidered patches.

Kevin writes his hypotheses, remembering that Foothill will be

making a decision about spending a fair amount of money based on

what he finds. To be more certain that he is right if he recommends

that the money be spent, Kevin writes his hypotheses so that the

unusual world would be the one where more than 35 per cent of

children’s socks are decorated:

Ho: π decorated socks < .35

Ha: π decorated socks > .35

When writing his hypotheses, Kevin knows that if his sample has

a proportion of decorated socks well below .35, he will want to

recommend against buying the machinery. He only wants to say the

data support the alternative if the sample proportion is well above

.35. To include the low values in the null hypothesis and only the

high values in the alternative, he uses a one-tail test, judging that

the data support the alternative only if his z-score is in the upper

tail. He will conclude that the machinery should be bought only if

his z-statistic is too large to have easily come from the sampling

distribution drawn from a population with a proportion of .35. Kevin

will accept Ha only if his z is large and positive.

Checking the bottom line of the t-table, Kevin sees that .95 of

all z-scores associated with the proportion are less than -1.645. His

rule is therefore to conclude that his sample data support the null

hypothesis that 35 per cent or less of children’s socks are decorated

if his sample (calculated) z is less than -1.645. If his sample z is

greater than -1.645, he will conclude that more than 35 per cent

of children’s socks are decorated and that Foothill Hosiery should
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invest in the machinery needed to sew embroidered patches on

socks.

Using the data the salespeople collected, Kevin finds the

proportion of the sample that is decorated:

Using this value, he computes his sample z-statistic:

All these calculations, along with the plots of both sampling

distribution of π and the associated standard normal distributions,

are computed by the interactive Excel template in Figure 4.1.

An interactive or media element has been excluded

from this version of the text. You can view it online

here: https://pressbooks.nscc.ca/

introductorybusinessstatistics/?p=32

Figure 4.1 Interactive Excel Template for Test of Hypothesis – see

Appendix 4.

Kevin’s collected numbers, shown in the yellow cells of Figure 4.1.,

can be changed to other numbers of your choice to see how the

business decision may be changed under alternative circumstances.

Because his sample (calculated) z-score is larger than -1.645, it

is unlikely that his sample z came from the sampling distribution

of z’s drawn from a population where π < .35, so it is unlikely that

his sample comes from a population with π < .35. Kevin can tell

John McGrath that the sample the salespeople collected supports

the conclusion that more than 35 per cent of children’s socks are

decorated with embroidered patches. John can feel comfortable

making the decision to buy the embroidery and sewing machinery.

66 | Chapter 4. Hypothesis Testing



Testing independence and categorical variables

We also use hypothesis testing when we deal with categorical

variables. Categorical variables are associated with categorical data.

For instance, gender is a categorical variable as it can be classified

into two or more categories. In business, and predominantly in

marketing, we want to determine on which factor(s) customers base

their preference for one type of product over others. Since

customers’ preferences are not the same even in a specific

geographical area, marketing strategists and managers are often

keen to know the association among those variables that affect

shoppers’ choices. In other words, they want to know whether

customers’ decisions are statistically independent of a

hypothesized factor such as age.

For example, imagine that the owner of a newly established family

restaurant in Burnaby, BC, with branches in North Vancouver,

Langley, and Kelowna, is interested in determining whether the

age of the restaurant’s customers affects which dishes they order.

If it does, she will explore the idea of charging different prices

for dishes popular with different age groups. The sales manager

has collected data on 711 sales of different dishes over the last six

months, along with the approximate age of the customers, and

divided the customers into three categories. Table 4.5 shows the

breakdown of orders and age groups.

Table 4.5 Food Orders by Age Group

Orders

Fish Veggie Steak Spaghetti Total

Age Groups

Kids 26 21 15 20 82

Adults 100 74 60 70 304

Seniors 90 45 80 110 325

Total 216 140 155 200 711
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The owner writes her hypotheses:

Ho: Customers’ preferences for dishes are independent of their

ages

Ha: Customers’ preferences for dishes depend on their ages

The underlying test for this contingency table is known as the

chi-square test. This will determine if customers’ ages and

preferences are independent of each other.

We compute both the observed and expected frequencies as we

did in the earlier example involving sports socks where O =

observed frequency in the sample in each class, and E = expected

frequency in the sample in each class. Then we calculate the

expected frequency for the above table with i rows and j columns,

using the following formula:

This chi-square distribution will have (i-1)(j-1) degrees of freedom.

One technical condition for this test is that the value for each of the

cells must not be less than 5. Figure 4.2 provides the hypothesized

values for different levels of significance.

The expected frequency, Eij, is found by multiplying the relative

frequency of each row and column, and then dividing this amount

by the total sample size. Thus,

For each of the expected frequencies, we select the associated

total row from each of the age groups, and multiply it by the total

of the same column, then divide it by the total sample size. For

the first row and column, we multiply (82 *216)/711=24.95. Table 4.6

summarizes all expected frequencies for this example.
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Table 4.6 Food Orders by Expected Frequencies

Orders

Fish Veggie Steak Spaghetti Total

Age Groups

Kids 24.95 16.15 17.88 23.07 82

Adults 92.35 59.86 66.27 85.51 304

Seniors 98.73 63.99 70.85 91.42 325

Total 216 140 155 200 711

Now we use the calculated expected frequencies and the observed

frequencies to compute the chi-square test statistic:

We computed the sample test statistic as 21.13, which is above

the 12.592 cut-off value of the chi-square table associated with

(3-1)*(4-1) = 6 df at .05 level. To find out the exact cut-off point from

the chi-square table, you can enter the alpha level of .05 and the

degrees of freedom, 6, directly into the yellow cells in the following

interactive Excel template (Figure 4.2). This template contains two

sheets; it will plot the chi-square distribution for this example and

will automatically show the exact cut-off point.

An interactive or media element has been excluded

from this version of the text. You can view it online

here: https://pressbooks.nscc.ca/

introductorybusinessstatistics/?p=32

Figure 4.2 Interactive Excel Template for Determining Chi-Square

Cut-off Point – see Appendix 4.

The result indicates that our sample data supported the alternative
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hypothesis. In other words, customers’ preferences for different

dishes depended on their age groups. Based on this outcome, the

owner may differentiate price based on these different age groups.

Using the test of independence, the owner may also go further

to find out if such dependency exists among any other pairs of

categorical data. This time, she may want to collect data for the

selected age groups at different locations of her restaurant in British

Columbia. The results of this test will reveal more information about

the types of customers these restaurants attract at different

locations. Depending on the availability of data, such statistical

analysis can also be carried out to help determine an improved

pricing policy for different groups in different locations, at different

times of day, or on different days of the week. Finally, the owner

may also redo this analysis by including other characteristics of

these customers, such as education, gender, etc., and their choice

of dishes.

Summary

This chapter has been an introduction to hypothesis testing. You

should be able to see the relationship between the mathematics and

strategies of hypothesis testing and the mathematics and strategies

of interval estimation. When making an interval estimate, you

construct an interval around your sample statistic based on a known

sampling distribution. When testing a hypothesis, you construct

an interval around a hypothesized population parameter, using a

known sampling distribution to determine the width of that interval.

You then see if your sample statistic falls within that interval to

decide if your sample probably came from a population with that

hypothesized population parameter. Hypothesis testing also has

implications for decision-making in marketing, as we saw when we

extended our discussion to include the test of independence for

categorical data.
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Hypothesis testing is a widely used statistical technique. It forces

you to think ahead about what you might find. By forcing you to

think ahead, it often helps with decision-making by forcing you to

think about what goes into your decision. All of statistics requires

clear thinking, and clear thinking generally makes better decisions.

Hypothesis testing requires very clear thinking and often leads to

better decision-making.
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5. Chapter 5. The t-Test

In Chapter 3, a sampling distribution, the t-distribution, was

introduced. In Chapter 4, you learned how to use the t-distribution

to make an important inference, an interval estimate of the

population mean. Here you will learn how to use that same t-

distribution to make more inferences, this time in the form of

hypothesis tests. You will learn how to use the t-test in three

different types of hypotheses. You will also have a chance to use

the interactive Excel templates to apply the t-test in alternative

situations. Before we start to learn about those tests, a quick review

of the t-distribution is in order.

The t-distribution

The t-distribution is a sampling distribution. You could generate

your own t-distribution with n-1 degrees of freedom by starting

with a normal population, choosing all possible samples of one size,

n, computing a t-score for each sample, where:

x = the sample mean

μ = the population mean

s = the sample standard deviation

n = the size of the sample

When you have all of the samples’ t-scores, form a relative

frequency distribution and you will have your t-distribution. Luckily,

you do not have to generate your own t-distributions because any

statistics book has a table that shows the shape of the t-distribution

for many different degrees of freedom. As introduced in Chapter

2, Figure 5.1 reproduces a portion of a typical t-table within an

interactive Excel template.
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An interactive or media element has been excluded

from this version of the text. You can view it online

here: https://pressbooks.nscc.ca/

introductorybusinessstatistics/?p=41

Figure 5.1 Interactive Excel Template for Determining Cut-off Point

of a t-Table – see Appendix 5.

When you look at the formula for the t-score, you should be able

to see that the mean t-score is zero because the mean of the x’s

is equal to μ. Because most samples have x’s that are close to μ,

most will have t-scores that are close to zero. The t-distribution is

symmetric, because half of the samples will have x’s greater than μ,

and half less. As you can see from the table, if there are 10 df, only

.005 of the samples taken from a normal population will have a t-

score greater than +3.17. Because the distribution is symmetric, .005

also have a t-score less than -3.17. Ninety-nine per cent of samples

will have a t-score between ±3.17. Like the example in Figure 5.1,

most t-tables have a picture showing what is in the body of the

table. In Figure 5.1, the shaded area is in the right tail, the body of

the table shows the t-score that leaves the α in the right tail. This

t-table also lists the two-tail α above the one-tail where p = .xx.

For 5 df, there is a .05 probability that a sample will have a t-score

greater than 2.02, and a .10 probability that a sample will have a t-

score either > +2.02 or < -2.02.

There are other sample statistics that follow this same shape and

can be used as the basis for different hypothesis tests. You will see

the t-distribution used to test three different types of hypotheses

in this chapter, and in later chapters, you will see that the t-

distribution can be used to test other hypotheses.

Though t-tables show how the sampling distribution of t-scores
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is shaped if the original population is normal, it turns out that

the sampling distribution of t-scores is very close to the one in

the table even if the original population is not quite normal, and

most researchers do not worry too much about the normality of

the original population. An even more important fact is that the

sampling distribution of t-scores is very close to the one in the table

even if the original population is not very close to being normal as

long as the samples are large. This means that you can safely use the

t-distribution to make inferences when you are not sure that the

population is normal as long as you are sure that it is bell-shaped.

You can also make inferences based on samples of about 30 or more

using the t-distribution when you are not sure if the population is

normal. Not only does the t-distribution describe the shape of the

distributions of a number of sample statistics, it does a good job of

describing those shapes when the samples are drawn from a wide

range of populations, normal or not.

A simple test: Does this sample come from a
population with that mean?

Imagine that you have taken all of the samples with n=10 from a

population for which you knew the mean, found the t-distribution

for 9 df by computing a t-score for each sample, and generated a

relative frequency distribution of the t’s. When you were finished,

someone brought you another sample (n=10) wondering if that new

sample came from the original population. You could use your

sampling distribution of t’s to test if the new sample comes from

the original population or not. To conduct the test, first hypothesize

that the new sample comes from the original population. With this

hypothesis, you have hypothesized a value for μ, the mean of the

original population, to use to compute a t-score for the new sample.

If the t for the new sample is close to zero—if the t-score for the new

sample could easily have come from the middle of the t-distribution
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you generated—your hypothesis that the new sample comes from a

population with the hypothesized mean seems reasonable, and you

can conclude that the data support the new sample coming from the

original population. If the t-score from the new sample is far above

or far below zero, your hypothesis that this new sample comes from

the original population seems unlikely to be true, for few samples

from the original population would have t-scores far from zero. In

that case, conclude that the data support the idea that the new

sample comes from some other population.

This is the basic method of using this t-test. Hypothesize the

mean of the population you think a sample might come from. Using

that mean, compute the t-score for the sample. If the t-score is

close to zero, conclude that your hypothesis was probably correct

and that you know the mean of the population from which the

sample came. If the t-score is far from zero, conclude that your

hypothesis is incorrect, and the sample comes from a population

with a different mean.

Once you understand the basics, the details can be filled in. The

details of conducting a hypothesis test of the population mean
— testing to see if a sample comes from a population with a certain

mean — are of two types. The first type concerns how to do all of

this in the formal language of statisticians. The second type of detail

is how to decide what range of t-scores implies that the new sample

comes from the original population.

You should remember from the last chapter that the formal

language of hypothesis testing always requires two hypotheses. The

first hypothesis is called the null hypothesis, usually denoted Ho.

It states that there is no difference between the mean of the

population from which the sample is drawn and the hypothesized

mean. The second is the alternative hypothesis, denoted Ha or H1.

It states that the mean of the population from which the sample

comes is different from the hypothesized value. If your question is

“does this sample come from a population with this mean?”, your Ha

simply becomes μ ≠ the hypothesized value. If your question is “does
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this sample come from a population with a mean greater than some

value”, then your Ha becomes μ > the hypothesized value.

The other detail is deciding how “close to zero” the sample t-score

has to be before you conclude that the null hypothesis is probably

correct. How close to zero the sample t-score must be before you

conclude that the data support Ho depends on the df and how big a

chance you want to take that you will make a mistake. If you decide

to conclude that the sample comes from a population with the

hypothesized mean only if the sample t is very, very close to zero,

there are many samples actually from the population that will have

t-scores that would lead you to believe they come from a population

with some other mean—it would be easy to make a mistake and

conclude that these samples come from another population. On the

other hand, if you decide to accept the null hypothesis even if the

sample t-score is quite far from zero, you will seldom make the

mistake of concluding that a sample from the original population

is from some other population, but you will often make another

mistake—concluding that samples from other populations are from

the original population. There are no hard rules for deciding how

much of which sort of chance to take. Since there is a trade-off

between the chance of making the two different mistakes, the

proper amount of risk to take will depend on the relative costs of

the two mistakes. Though there is no firm basis for doing so, many

researchers use a 5 per cent chance of the first sort of mistake as

a default. The level of chance of making the first error is usually

called alpha (α) and the value of alpha chosen is usually written as

a decimal fraction — taking a 5 per cent chance of making the first

mistake would be stated as α. When in doubt, use α.

If your alternative hypothesis is not equal to, you will conclude

that the data support Ha if your sample t-score is either well below

or well above zero, and you need to divide α between the two tails of

the t-distribution. If you want to use α=.05, you will support Ha if the

t is in either the lowest .025 or the highest .025 of the distribution.

If your alternative is greater than, you will conclude that the data

support Ha only if the sample t-score is well above zero. So, put all
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of your α in the right tail. Similarly, if your alternative is less than,

put the whole α in the left tail.

The table itself can be confusing even after you know how many

degrees of freedom you have and if you want to split your α between

the two tails or not. Adding to the confusion, not all t-tables look

exactly the same. Look at a typical t-table and you will notice that it

has three parts: column headings of decimal fractions, row headings

of whole numbers, and a body of numbers generally with values

between 1 and 3. The column headings are labelled p or area in the
right tail, and sometimes α. The row headings are labelled df, but

are sometimes labelled ν or degrees of freedom. The body is usually

left unlabelled, and it shows the t-score that goes with the α and

degrees of freedom of that column and row. These tables are set

up to be used for a number of different statistical tests, so they

are presented in a way that is a compromise between ease of use

in a particular situation and usability for a wide variety of tests. By

using the interactive t-table along with the t-distribution provided

in Figure 5.1, you will learn how to use other similar tables in any

textbook. This template contains two sheets. In one sheet you will

see the t-distribution plot, where you can enter your df and choose

your level in the yellow cells. The red-shaded area of the upper tail

of the distribution will adjust automatically. Alternatively, you can

go to the next sheet, where you will have access to the complete

version of the t-table. To find the upper tail of the t-distribution,

enter df and α level into the yellow cells. The red-shaded area on the

graph will adjust automatically, indicating the associated upper tail

of the t-distribution.

In order to use the table to test to see if “this sample comes from

a population with a certain mean,” choose α and find the number

of degrees of freedom. The number of degrees of freedom in a test

involving one sample mean is simply the size of the sample minus

one (df = n-1). The α you choose may not be the α in the column

heading. The column headings show the right tail areas—the chance

you’ll get a t-score larger than the one in the body of the table.

Assume that you had a sample with ten members and chose α = .05.
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There are nine degrees of freedom, so go across the 9 df row to

the .025 column since this is a two-tail test, and find the t-score of

2.262. This means that in any sampling distribution of t-scores, with

samples of ten drawn from a normal population, only 2.5 per cent

(.025) of the samples would have t-scores greater than 2.262—any

t-score greater than 2.262 probably occurs because the sample is

from some other population with a larger mean. Because the t-

distributions are symmetrical, it is also true that only 2.5 per cent

of the samples of ten drawn from a normal population will have t-

scores less than -2.262. Putting the two together, 5 per cent of the t-

scores will have an absolute value greater the 2.262. So if you choose

α=.05, you will probably be using a t-score in the .025 column. The

picture that is at the top of most t-tables shows what is going on.

Look at it when in doubt.

LaTonya Williams is the plant manager for Eileen’s Dental Care

Company (EDC), which makes dental floss in Toronto, Ontario. EDC

has a good, stable workforce of semi-skilled workers who package

floss, and are paid by piecework. The company wants to make sure

that these workers are paid more than the local average wage. A

recent report by the local Chamber of Commerce shows an average

wage for machine operators of $11.71 per hour. LaTonya must decide

if a raise is needed to keep her workers above the average. She

takes a sample of workers, pulls their work reports, finds what each

one earned last week, and divides their earnings by the hours they

worked to find average hourly earnings. Those data appear in Table

5.1.
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Table 5.1 Sample of Hourly Wage Paid at EDC Company

Worker Wage (dollars/hour)

Smith 12.65

Wilson 12.67

Peterson 11.9

Jones 10.45

Gordon 13.5

McCoy 12.95

Bland 11.77

LaTonya wants to test to see if the mean of the average hourly

earnings of her workers is greater than $11.71. She wants to use a

one-tail test because her question is greater than not unequal to.

Her hypotheses are:

\$11.71"

title="H_o: \mu \leq \$11.71\;and\;H_a: \mu > \$11.71" class="latex

mathjax">

As is usual in this kind of situation, LaTonya is hoping that the data

support Ha, but she wants to be confident that it does before she

decides her workers are earning above average wages. Remember

that she will compute a t-score for her sample using $11.71 for μ. If

her t-score is negative or close to zero, she will conclude that the

data support Ho. Only if her t-score is large and positive will she go

with Ha. She decides to use α=.025 because she is unwilling to take

much risk of saying the workers earn above average wages when

they really do not. Because her sample has n=7, she has 6 df. Looking

at the table, she sees that the data will support Ha, the workers earn

more than average, only if the sample t-score is greater than 2.447.

Finding the sample mean and standard deviation, x = $10.83 and s

= $.749, LaTonya computes her sample t-score:
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Because her sample t is not greater than +2.447, the H0 is not

rejected, indicating that LaTonya concludes that she will have to

raise the piece rates EDC pays in order to be really sure that mean

hourly earnings are above the local average wage.

If LaTonya had simply wanted to know if EDC’s workers earned

the same as other workers in the area, she would have used a two-

tail test. In that case, her hypotheses would have been:

Using α=.10, LaTonya would split the .10 between the two tails

since the data support Ha if the sample t-score is either large and

negative or large and positive. Her arithmetic is the same, her

sample t-score is still 1.41, but she now will decide that the data

support Ha only if it is outside ±1.943. In this case, LaTonya will again

reject H0, and conclude that the EDC’s workers do not earn the

same as other workers in the area.

An alternative to choosing an alpha

Many researchers now report how unusual the sample t-score

would be if the null hypothesis were true rather than choosing an

α and stating whether the sample t-score implies the data support

one or the other of the hypotheses based on that α. When a

researcher does this, he is essentially letting the reader of his report

decide how much risk to take of making which kind of mistake.

There are even two ways to do this. If you look at a portion of

any textbook t-table, you will see that it is not set up very well for

this purpose; if you wanted to be able to find out what part of a

t-distribution was above any t-score, you would need a table that

listed many more t-scores. Since the t-distribution varies as the

df. changes, you would really need a whole series of t-tables, one

for each df. Fortunately, the interactive Excel template provided in

Figure 5.1 will enable you to have a complete picture of the t-table

and its distribution.
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The old-fashioned way of making the reader decide how much of

which risk to take is to not state an α in the body of your report,

but only give the sample t-score in the main text. To give the reader

some guidance, you look at the usual t-table and find the smallest

α, say it is .01, that has a t-value less than the one you computed

for the sample. Then write a footnote saying, “The data support the

alternative hypothesis for any α > .01.”

The more modern way uses the capability of a computer to store

lots of data. Many statistical software packages store a set of

detailed t-tables, and when a t-score is computed, the package has

the computer look up exactly what proportion of samples would

have t-scores larger than the one for your sample. Table 5.2 shows

the computer output for LaTonya’s problem from a typical statistical

package. Notice that the program gets the same t-score that

LaTonya did, it just goes to more decimal places. Also notice that it

shows something called the p-value. The p-value is the proportion

of t-scores that are larger than the one just computed. Looking

at the example, the computed t statistic is 1.48 and the p-value is

.094. This means that if there are 6 df, a little more than 9 per cent

of samples will have a t-score greater than 1.48. Remember that

LaTonya used an α = .025 and decided that the data supported Ho,

the p-value of .094 means that Ho, would be supported for any α less

than .094. Since LaTonya had used α = .025, this p-value means she

does not find support for Ho.

Table 5.2 Output from Typical
Statistical Software for

LaTonya’s Problem

Hypothesis test: Mean

Null hypothesis: Mean = $11.71

Alternative: greater than

Computed t statistic = 1.48

p-value = .094

The p-value approach is becoming the preferred way to present
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research results to audiences of professional researchers. Most of

the statistical research conducted for a business firm will be used

directly for decision making or presented to an audience of

executives to aid them in making a decision. These audiences will

generally not be interested in deciding for themselves which

hypothesis the data support. When you are making a presentation of

results to your boss, you will want to simply state which hypothesis

the evidence supports. You may decide by using either the

traditional α approach or the more modern p– value approach, but

deciding what the evidence says is probably your job.

Another t-test: do these two (independent)
samples come from populations with the same
mean?

One of the other statistics that has a sampling distribution that

follows the t-distribution is the difference between two sample

means. If samples of one size (n1) are taken from one normal

population and samples of another size (n2) are taken from another

normal population (and the populations have the same standard

deviation), then a statistic based on the difference between the

sample means and the difference between the population means

is distributed like t with n1 + n2 – 2 degrees of freedom. These

samples are independent because the members in one sample do

not affect which members are in the other sample. You can choose

the samples independently of each other, and the two samples do

not need to be the same size. The t-statistic is:

where

xi = the mean of sample i
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μi = the mean of population i

s2 = the pooled variance

ni = the size of sample i

The usual case is to test to see if the samples come from

populations with the same mean, the case where (μ1 – μ2) = 0. The

pooled variance is simply a weighted average of the two sample

variances, with the weights based on the sample sizes. This means

that you will have to calculate the pooled variance before you

calculate the t-score. The formula for pooled variance is:

To use the pooled variance t-score, it is necessary to assume

that the two populations have equal variances. If you are wondering

about why statisticians make a strong assumption in order to use

such a complicated formula, it is because the formula that does not

need the assumption of equal variances is even more complicated,

and reduces the degrees of freedom in the final statistic. In any case,

unless you have small samples, the amount of arithmetic needed

means that you will probably want to use a statistical software

package for this test. You should also note that you can test to see

if two samples come from populations that are any hypothesized

distance apart by setting (μ1 – μ2) equal to that distance.

In a report published in a 2001 issue of University Affairs,1 Frank

claimed that researchers found a drop in the number of students

getting low grades in most courses, and an increase in the number

getting high grades (Frank, 2001). This issue is also known as grade

inflation. Nora Alston chairs the Economics Department at Oaks

College, and the Dean has sent her a copy of the report with a

note attached saying, “Is this true here at Oaks? Let me know.” Dr.

Alston is not sure if the Dean would be happier if economics grades

1. Frank, T. (2001, February). New study says grades are

inflated at Ontario universities. University Affairs, 29.
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were higher or lower than other grades, but the report claims that

economics grades are lower. Her first stop is the Registrar’s office.

She has the clerk in that office pick a sample of 10 class grade

reports from across the college spread over the past three

semesters. She also has the clerk pick out a sample of 10 reports

for economics classes. She ends up with a total of 38 grades for

economics classes and 51 grades for other classes. Her hypotheses

are:

She decides to use α = .05$ .

This is a lot of data, and Dr. Alston knows she will want to use the

computer to help. She initially thought she would use a spreadsheet

to find the sample means and variances, but after thinking a minute,

she decided to use a statistical software package. The one she is

most familiar with is called SAS. She loads SAS onto her computer,

enters the data, and gives the proper SAS commands. The computer

gives her the output shown in Table 5.3.

Table 5.3 The SAS System Software Output for Dr. Alston’s Grade Study

TTFST Procedure

Variable: GRADE

Dept N Mean Dev Std Error Minimum Maximum

Econ 38 2.28947 1.01096 .16400 0 4.00000
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Variance t df Prob>[t]

Unequal -2.3858 85.1 .0193

Equal -2.3345 87.0 .0219

For Ho: Variances are equal, f=1.35, df[58.37], Prob>f=.3485

Dr. Alston has 87 df, and has decided to use a one-tailed, left tail test

with α = .05$. She goes to her t-table and finds that 87 df does not

appear, the table skipping from 60 to 120 df. There are two things

she could do. She could try to interpolate the t-score that leaves .05

in the tail with 87 df, or she could choose between the t-value for 60

and 120 in a conservative manner. Using the conservative choice is

the best initial approach, and looking at her table she sees that for

60 df .05 of t-scores are less than -1.671,and for 120 df, .05 are less

than -1.658. She does not want to conclude that the data support

economics grades being lower unless her sample t-score is far from

zero, so she decides that she will accept Ha if her sample t is to the

left of -1.671. If her sample t happens to be between -1.658 and -1.671,

she will have to interpolate.

Looking at the SAS output, Dr. Alston sees that her t-score for

the equal variances formula is -2.3858, which is well below -1.671.

She concludes that she will tell the Dean that economics grades are

lower than grades elsewhere at Oaks College.

Notice that SAS also provides the t-score and df for the case

where equal variances are not assumed in the unequal line. SAS

also provides a p-value, but it is for a two-tail test because it gives

the probability that a t with a larger absolute value, >|T|, occurs. Be

careful when using the p-values from software: notice if they are

one-tail or two-tail p-values before you make your report.
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A third t-test: do these (paired) samples come
from the sample population?

Managers are often interested in before and after questions. As a

manager or researcher, you will often want to look at longitudinal
studies, studies that ask about what has happened to an individual

as a result of some treatment or across time. Are they different after

than they were before? For example, if your firm has conducted

a training program, you will want to know if the workers who

participated became more productive. If the work area has been

rearranged, do workers produce more than before? Though you

can use the difference of means test developed earlier, this is a

different situation. Earlier, you had two samples that were chosen

independently of each other; you might have a sample of workers

who received the training and a sample of workers who had not.

The situation for this test is different; now you have a sample of

workers, and for each worker, you have measured their productivity

before the training or rearrangement of the work space, and you

have measured their productivity after. For each worker, you have

a pair of measures, before and after. Another way to look at this is

that for each member of the sample you have a difference between

before and after.

You can test to see if these differences equal zero, or any other

value, because a statistic based on these differences follows the t-

distribution for n-1 df when you have n matched pairs. That statistic

is:

where

D = the mean of the differences in the pairs in the sample

δ = the mean of the differences in the pairs in the population

sD = the standard deviation of the differences in the sample
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n = the number of pairs in the sample

It is a good idea to take a minute and figure out this formula.

There are paired samples, and the differences in those pairs, the D’s,

are actually a population. The mean of those D’s is δ. Any sample

of pairs will also yield a sample of D’s. If those D’s are normally

distributed, then the t-statistic in the formula above will follow the

t-distribution. If you think of the D’s as being the same as x’s in

the t-formula at the beginning of the chapter, and think of δ as the

population mean, you should realize that this formula is really just

that basic t formula.

Lew Podolsky is division manager for Dairyland Lighting, a

manufacturer of outdoor lights for parking lots, barnyards, and

playing fields. Dairyland Lighting organizes its production work by

teams. The size of the team varies somewhat with the product

being assembled, but there are usually three to six in a team, and

a team usually stays together for a few weeks assembling the same

product. Dairyland Lighting has two new plants: one in Oshawa,

Ontario, and another in Osoyoos, British Columbia, that serves their

Canadian west coast customers. Lew has noticed that productivity

seems to be lower in Osoyoos during the summer, a problem that

does not occur at their plant in Oshawa. After visiting the Osoyoos

plant in July, August, and November, and talking with the workers

during each visit, Lew suspects that the un-air-conditioned plant

just gets too hot for good productivity. Unfortunately, it is difficult

to directly compare plant-wide productivity at different times of

the year because there is quite a bit of variation in the number of

employees and the product mix through the year. Lew decides to

see if the same workers working on the same products are more

productive on cool days than hot days by asking the local manager,

Dave Mueller, to find a cool day and a hot day from the previous

fall and choose ten work teams who were assembling the same

products on the two days. Dave sends Lew the data found in Table

5.4.
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Table 5.4 Lew Podolsky’s Data for the Air-Conditioning Decision

Team leader Output—cool
day

Output—hot
day

Difference
(cool-hot)

November 14 July 20

Martinez 153 149 4

McAlan 167 170 -3

Wilson 164 155 9

Burningtree 183 179 4

Sanchez 177 167 10

Lilly 162 150 12

Cantu 165 158 7

Lew decides that if the data support productivity being higher on

cool days, he will call in a heating/air-conditioning contractor to

get some cost estimates so that he can decide if installing air

conditioning in the Osoyoos plant is cost effective. Notice that he

has matched pairs data — for each team he has production on

November 14, a cool day, and on July 20, a hot day. His hypotheses

are:

0" title="H_o: \delta \leq

0\;and\;H_a: \delta > 0" class="latex mathjax">

Using α = .05 in this one-tail test, Lew will decide to call the

engineer if his sample t-score is greater than 1.943, since there are

6 df. Using the interactive Excel template in Figure 5.2, Lew finds:

and his sample t-score is

and
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An interactive or media element has been excluded

from this version of the text. You can view it online

here: https://pressbooks.nscc.ca/

introductorybusinessstatistics/?p=41

Figure 5.2 Interactive Excel Template for Paired t-Test – see

Appendix 5.

All these calculations can also be done in the interactive Excel

template in Figure 5.2. You can add the two columns of data for cool

and hot days and set your α level. The associated t-distribution will

automatically adjust based on your data and the selected level of α.

You can also see the p-value in the dark blue, and the selected α in

the red-shaded areas on this graph. Because his sample t-score is

greater than 1.943, or the p-value is less than the alpha, Lew gets out

the telephone book and looks under air conditioning contractors to

call for some estimates.

Summary

The t-tests are commonly used hypothesis tests. Researchers often

find themselves in situations where they need to test to see if a

sample comes from a certain population, and therefore test to see

if the sample probably came from a population with that certain

mean. Even more often, researchers will find themselves with two

samples and want to know if the samples come from the same
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population, and will test to see if the samples probably come from

populations with the same mean. Researchers also frequently find

themselves asking if two sets of paired samples have equal means.

In any case, the basic strategy is the same as for any hypothesis test.

First, translate the question into null and alternative hypotheses,

making sure that the null hypothesis includes an equal sign. Second,

choose α. Third, compute the relevant statistics, here the t-score,

from the sample or samples. Fourth, using the tables, decide if the

sample statistic leads you to conclude that the sample came from a

population where the null hypothesis is true or a population where

the alternative is true.

The t-distribution is also used in testing hypotheses in other

situations since there are other sampling distributions with the

same t-distribution shape. So, remember how to use the t-tables for

later chapters.

Statisticians have also found how to test to see if three or more

samples come from populations with the same mean. That

technique is known as one-way analysis of variance. The approach

used in analysis of variance is quite different from that used in the

t-test. It will be covered in Chapter 6.
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6. Chapter 6. F-Test and
One-Way ANOVA

F-distribution

Years ago, statisticians discovered that when pairs of samples are

taken from a normal population, the ratios of the variances of the

samples in each pair will always follow the same distribution. Not

surprisingly, over the intervening years, statisticians have found

that the ratio of sample variances collected in a number of different

ways follow this same distribution, the F-distribution. Because we

know that sampling distributions of the ratio of variances follow a

known distribution, we can conduct hypothesis tests using the ratio

of variances.

The F-statistic is simply:

where s1
2 is the variance of sample 1. Remember that the sample

variance is:

Think about the shape that the F-distribution will have. If s1
2 and

s2
2 come from samples from the same population, then if many pairs

of samples were taken and F-scores computed, most of those F-

scores would be close to one. All of the F-scores will be positive

since variances are always positive — the numerator in the formula

is the sum of squares, so it will be positive, the denominator is the

sample size minus one, which will also be positive. Thinking about

ratios requires some care. If s1
2 is a lot larger than s2

2, F can be quite

large. It is equally possible for s2
2 to be a lot larger than s1

2, and then

F would be very close to zero. Since F goes from zero to very large,
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with most of the values around one, it is obviously not symmetric;

there is a long tail to the right, and a steep descent to zero on the

left.

There are two uses of the F-distribution that will be discussed in

this chapter. The first is a very simple test to see if two samples

come from populations with the same variance. The second is one-

way analysis of variance (ANOVA), which uses the F-distribution to

test to see if three or more samples come from populations with the

same mean.

A simple test: Do these two samples come from
populations with the same variance?

Because the F-distribution is generated by drawing two samples

from the same normal population, it can be used to test the

hypothesis that two samples come from populations with the same

variance. You would have two samples (one of size n1 and one of

size n2) and the sample variance from each. Obviously, if the two

variances are very close to being equal the two samples could easily

have come from populations with equal variances. Because the F-

statistic is the ratio of two sample variances, when the two sample

variances are close to equal, the F-score is close to one. If you

compute the F-score, and it is close to one, you accept your

hypothesis that the samples come from populations with the same

variance.

This is the basic method of the F-test. Hypothesize that the

samples come from populations with the same variance. Compute

the F-score by finding the ratio of the sample variances. If the F-

score is close to one, conclude that your hypothesis is correct and

that the samples do come from populations with equal variances.

If the F-score is far from one, then conclude that the populations

probably have different variances.

The basic method must be fleshed out with some details if you are
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going to use this test at work. There are two sets of details: first,

formally writing hypotheses, and second, using the F-distribution

tables so that you can tell if your F-score is close to one or not.

Formally, two hypotheses are needed for completeness. The first

is the null hypothesis that there is no difference (hence null). It is

usually denoted as Ho. The second is that there is a difference, and

it is called the alternative, and is denoted H1 or Ha.

Using the F-tables to decide how close to one is close enough to

accept the null hypothesis (truly formal statisticians would say “fail

to reject the null”) is fairly tricky because the F-distribution tables

are fairly tricky. Before using the tables, the researcher must decide

how much chance he or she is willing to take that the null will be

rejected when it is really true. The usual choice is 5 per cent, or as

statisticians say, “α – .05″. If more or less chance is wanted, α can be

varied. Choose your α and go to the F-tables. First notice that there

are a number of F-tables, one for each of several different levels

of α (or at least a table for each two α’s with the F-values for one

α in bold type and the values for the other in regular type). There

are rows and columns on each F-table, and both are for degrees

of freedom. Because two separate samples are taken to compute

an F-score and the samples do not have to be the same size, there

are two separate degrees of freedom — one for each sample. For

each sample, the number of degrees of freedom is n-1, one less

than the sample size. Going to the table, how do you decide which

sample’s degrees of freedom (df) are for the row and which are for

the column? While you could put either one in either place, you can

save yourself a step if you put the sample with the larger variance
(not necessarily the larger sample) in the numerator, and then

that sample’s df determines the column and the other sample’s df

determines the row. The reason that this saves you a step is that the

tables only show the values of F that leave α in the right tail where

F > 1, the picture at the top of most F-tables shows that. Finding the

critical F-value for left tails requires another step, which is outlined

in the interactive Excel template in Figure 6.1. Simply change the
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numerator and the denominator degrees of freedom, and the α in

the right tail of the F-distribution in the yellow cells.

An interactive or media element has been excluded

from this version of the text. You can view it online

here: https://pressbooks.nscc.ca/

introductorybusinessstatistics/?p=46

Figure 6.1 Interactive Excel Template of an F-Table – see Appendix

6.

F-tables are virtually always printed as one-tail tables, showing the

critical F-value that separates the right tail from the rest of the

distribution. In most statistical applications of the F-distribution,

only the right tail is of interest, because most applications are

testing to see if the variance from a certain source is greater than

the variance from another source, so the researcher is interested

in finding if the F-score is greater than one. In the test of equal

variances, the researcher is interested in finding out if the F-score is

close to one, so that either a large F-score or a small F-score would

lead the researcher to conclude that the variances are not equal.

Because the critical F-value that separates the left tail from the rest

of the distribution is not printed, and not simply the negative of

the printed value, researchers often simply divide the larger sample

variance by the smaller sample variance, and use the printed tables

to see if the quotient is “larger than one”, effectively rigging the

test into a one-tail format. For purists, and occasional instances, the

left-tail critical value can be computed fairly easily.

The left-tail critical value for x, y degrees of freedom (df) is simply

the inverse of the right-tail (table) critical value for y, x df. Looking

at an F-table, you would see that the F-value that leaves α – .05 in

the right tail when there are 10, 20 df is F=2.35. To find the F-value

94 | Chapter 6. F-Test and One-Way ANOVA



that leaves α – .05 in the left tail with 10, 20 df, look up F=2.77 for α

– .05, 20, 10 df. Divide one by 2.77, finding .36. That means that 5 per

cent of the F-distribution for 10, 20 df is below the critical value of

.36, and 5 per cent is above the critical value of 2.35.

Putting all of this together, here is how to conduct the test to see

if two samples come from populations with the same variance. First,

collect two samples and compute the sample variance of each, s1
2

and s2
2. Second, write your hypotheses and choose α . Third find the

F-score from your samples, dividing the larger s2 by the smaller so

that F>1. Fourth, go to the tables, find the table for α/2, and find

the critical (table) F-score for the proper degrees of freedom (n-1

and n-1). Compare it to the samples’ F-score. If the samples’ F is

larger than the critical F, the samples’ F is not “close to one”, and

Ha the population variances are not equal, is the best hypothesis.

If the samples’ F is less than the critical F, Ho, that the population

variances are equal, should be accepted.

Example #1

Lin Xiang, a young banker, has moved from Saskatoon,

Saskatchewan, to Winnipeg, Manitoba, where she has recently been

promoted and made the manager of City Bank, a newly established

bank in Winnipeg with branches across the Prairies. After a few

weeks, she has discovered that maintaining the correct number

of tellers seems to be more difficult than it was when she was a

branch assistant manager in Saskatoon. Some days, the lines are

very long, but on other days, the tellers seem to have little to do. She

wonders if the number of customers at her new branch is simply

more variable than the number of customers at the branch where

she used to work. Because tellers work for a whole day or half a

day (morning or afternoon), she collects the following data on the

number of transactions in a half day from her branch and the branch

where she used to work:
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Winnipeg branch: 156, 278, 134, 202, 236, 198, 187, 199, 143, 165, 223

Saskatoon branch: 345, 332, 309, 367, 388, 312, 355, 363, 381

She hypothesizes:

She decides to use α – .05. She computes the sample variances

and finds:

Following the rule to put the larger variance in the numerator, so

that she saves a step, she finds:

An interactive or media element has been excluded

from this version of the text. You can view it online

here: https://pressbooks.nscc.ca/

introductorybusinessstatistics/?p=46

Figure 6.2 Interactive Excel Template for F-Test – see Appendix 6.

Using the interactive Excel template in Figure 6.2 (and remembering

to use the α – .025 table because the table is one-tail and the test is

two-tail), she finds that the critical F for 10,8 df is 4.30. Because her

F-calculated score from Figure 6.2 is less than the critical score, she

concludes that her F-score is “close to one”, and that the variance of

customers in her office is the same as it was in the old office. She

will need to look further to solve her staffing problem.
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Analysis of variance (ANOVA)

The importance of ANOVA

A more important use of the F-distribution is in analyzing variance

to see if three or more samples come from populations with equal

means. This is an important statistical test, not so much because

it is frequently used, but because it is a bridge between univariate

statistics and multivariate statistics and because the strategy it uses

is one that is used in many multivariate tests and procedures.

One-way ANOVA: Do these three (or more)
samples all come from populations with the same
mean?

This seems wrong — we will test a hypothesis about means by

analyzing variance. It is not wrong, but rather a really clever insight

that some statistician had years ago. This idea — looking at variance

to find out about differences in means — is the basis for much of the

multivariate statistics used by researchers today. The ideas behind

ANOVA are used when we look for relationships between two or

more variables, the big reason we use multivariate statistics.

Testing to see if three or more samples come from populations

with the same mean can often be a sort of multivariate exercise.

If the three samples came from three different factories or were

subject to different treatments, we are effectively seeing if there is a

difference in the results because of different factories or treatments

— is there a relationship between factory (or treatment) and the

outcome?

Think about three samples. A group of x’s have been collected,
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and for some good reason (other than their x value) they can be

divided into three groups. You have some x’s from group (sample)

1, some from group (sample) 2, and some from group (sample) 3. If

the samples were combined, you could compute a grand mean and

a total variance around that grand mean. You could also find the

mean and (sample) variance within each of the groups. Finally, you

could take the three sample means, and find the variance between
them. ANOVA is based on analyzing where the total variance comes

from. If you picked one x, the source of its variance, its distance

from the grand mean, would have two parts: (1) how far it is from

the mean of its sample, and (2) how far its sample’s mean is from the

grand mean. If the three samples really do come from populations

with different means, then for most of the x’s, the distance between

the sample mean and the grand mean will probably be greater than

the distance between the x and its group mean. When these

distances are gathered together and turned into variances, you can

see that if the population means are different, the variance between

the sample means is likely to be greater than the variance within the

samples.

By this point in the book, it should not surprise you to learn that

statisticians have found that if three or more samples are taken

from a normal population, and the variance between the samples is

divided by the variance within the samples, a sampling distribution

formed by doing that over and over will have a known shape. In this

case, it will be distributed like F with m-1, n–m df, where m is the

number of samples and n is the size of the m samples altogether.

Variance between is found by:

where xj is the mean of sample j, and x is the grand mean.

The numerator of the variance between is the sum of the squares

of the distance between each x’s sample mean and the grand mean.
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It is simply a summing of one of those sources of variance across all

of the observations.

The variance within is found by:

Double sums need to be handled with care. First (operating on the

inside or second sum sign) find the mean of each sample and the

sum of the squares of the distances of each x in the sample from its

mean. Second (operating on the outside sum sign), add together the

results from each of the samples.

The strategy for conducting a one-way analysis of variance is

simple. Gather m samples. Compute the variance between the

samples, the variance within the samples, and the ratio of between

to within, yielding the F-score. If the F-score is less than one, or

not much greater than one, the variance between the samples is

no greater than the variance within the samples and the samples

probably come from populations with the same mean. If the F-score

is much greater than one, the variance between is probably the

source of most of the variance in the total sample, and the samples

probably come from populations with different means.

The details of conducting a one-way ANOVA fall into three

categories: (1) writing hypotheses, (2) keeping the calculations

organized, and (3) using the F-tables. The null hypothesis is that all

of the population means are equal, and the alternative is that not

all of the means are equal. Quite often, though two hypotheses are

really needed for completeness, only Ho is written:

Keeping the calculations organized is important when you are

finding the variance within. Remember that the variance within is

found by squaring, and then summing, the distance between each

observation and the mean of its sample. Though different people do

the calculations differently, I find the best way to keep it all straight

is to find the sample means, find the squared distances in each
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of the samples, and then add those together. It is also important

to keep the calculations organized in the final computing of the

F-score. If you remember that the goal is to see if the variance

between is large, then its easy to remember to divide variance

between by variance within.

Using the F-tables is the third detail. Remember that F-tables are

one-tail tables and that ANOVA is a one-tail test. Though the null

hypothesis is that all of the means are equal, you are testing that

hypothesis by seeing if the variance between is less than or equal to

the variance within. The number of degrees of freedom is m-1, n–m,

where m is the number of samples and n is the total size of all the

samples together.

Example #2

The young bank manager in Example 1 is still struggling with finding

the best way to staff her branch. She knows that she needs to have

more tellers on Fridays than on other days, but she is trying to

find if the need for tellers is constant across the rest of the week.

She collects data for the number of transactions each day for two

months. Here are her data:

Mondays: 276, 323, 298, 256, 277, 309, 312, 265, 311

Tuesdays: 243, 279, 301, 285, 274, 243, 228, 298, 255

Wednesdays: 288, 292, 310, 267, 243, 293, 255, 273

Thursdays: 254, 279, 241, 227, 278, 276, 256, 262

She tests the null hypothesis:

and decides to use α – .05. She finds:

m = 291.8

tu = 267.3

w = 277.6

th = 259.1

and the grand mean = 274.3
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She computes variance within:

[(276-291.8)2+(323-291.8)2+…+(243-267.6)2+…+(288-277.6)2+…+(254

-259.1)2]/[34-4]=15887.6/30=529.6

Then she computes variance between:

[9(291.8-274.3)2+9(267.3-274.3)2+8(277.6-274.3)2+8(259.1-274.3)2]/[

4-1]

= 5151.8/3 = 1717.3

She computes her F-score:

An interactive or media element has been excluded

from this version of the text. You can view it online

here: https://pressbooks.nscc.ca/

introductorybusinessstatistics/?p=46

Figure 6.3 Interactive Excel Template for One-Way ANOVA – see

Appendix 6.

You can enter the number of transactions each day in the yellow

cells in Figure 6.3, and select the α. As you can then see in Figure

6.3, the calculated F-value is 3.24, while the F-table (F-Critical) for

α – .05 and 3, 30 df, is 2.92. Because her F-score is larger than the

critical F-value, or alternatively since the p-value (0.036) is less than

α – .05, she concludes that the mean number of transactions is not

equal on different days of the week, or at least there is one day that

is different from others. She will want to adjust her staffing so that

she has more tellers on some days than on others.
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Summary

The F-distribution is the sampling distribution of the ratio of the

variances of two samples drawn from a normal population. It is

used directly to test to see if two samples come from populations

with the same variance. Though you will occasionally see it used to

test equality of variances, the more important use is in analysis of

variance (ANOVA). ANOVA, at least in its simplest form as presented

in this chapter, is used to test to see if three or more samples

come from populations with the same mean. By testing to see if the

variance of the observations comes more from the variation of each

observation from the mean of its sample or from the variation of the

means of the samples from the grand mean, ANOVA tests to see if

the samples come from populations with equal means or not.

ANOVA has more elegant forms that appear in later chapters.

It forms the basis for regression analysis, a statistical technique

that has many business applications; it is covered in later chapters.

The F-tables are also used in testing hypotheses about regression

results.

This is also the beginning of multivariate statistics. Notice that in

the one-way ANOVA, each observation is for two variables: the x
variable and the group of which the observation is a part. In later

chapters, observations will have two, three, or more variables.

The F-test for equality of variances is sometimes used before

using the t-test for equality of means because the t-test, at least

in the form presented in this text, requires that the samples come

from populations with equal variances. You will see it used along

with t-tests when the stakes are high or the researcher is a little

compulsive.
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7. Chapter 7. Some
Non-Parametric Tests

Remember that you use statistics to make inferences about

populations from samples. Most of the techniques statisticians use

require that two assumptions are met. First, the population that

the sample comes from is normal. Second, whenever means and

variances were computed, the numbers in the data are cardinal or

interval, meaning that the value given an observation not only tells

you which observation is larger or smaller, but how much larger

or smaller. There are many situations when these assumptions are

not met, and using the techniques developed so far will not be

appropriate. Fortunately, statisticians have developed another set

of statistical techniques, non-parametric statistics, for these

situations. Three of these tests will be explained in this chapter.

These three are the Mann-Whitney U-test, which tests to see if

two independently chosen samples come from populations with the

same location; the Wilcoxon rank sum test, which tests to see if

two paired samples come from populations with the same location;

and Spearman’s rank correlation, which tests to see if two variables

are related. The Mann-Whitney U-test is also presented in an

interactive Excel template.

What does non-parametric mean?

To a statistician, a parameter is a measurable characteristic of a

population. The population characteristics that usually interest

statisticians are the location and the shape. Non-parametric

statistics are used when the parameters of the population are not

measurable or do not meet certain standards. In cases when the
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data only order the observations, so that the interval between the

observations is unknown, neither a mean nor a variance can be

meaningfully computed. In such cases, you need to use non-

parametric tests. Because your sample does not have cardinal, or

interval, data, you cannot use it to estimate the mean or variance

of the population, though you can make other inferences. Even if

your data are cardinal, the population must be normal before the

shape of the many sampling distributions are known. Fortunately,

even if the population is not normal, such sampling distributions

are usually close to the known shape if large samples are used.

In that case, using the usual techniques is acceptable. However, if

the samples are small and the population is not normal, you have

to use non-parametric statistics. As you know, “there is no such

thing as a free lunch”. If you want to make an inference about a

population without having cardinal data, or without knowing that

the population is normal, or with very small samples, you will have

to give up something. In general, non-parametric statistics are less

precise than parametric statistics. Because you know less about the

population you are trying to learn about, the inferences you make

are less exact.

When either (1) the population is not normal and the samples

are small, or (2) when the data are not cardinal, the same non-

parametric statistics are used. Most of these tests involve ranking

the members of the sample, and most involve comparing the

ranking of two or more samples. Because we cannot compute

meaningful sample statistics to compare to a hypothesized

standard, we end up comparing two samples.

Do these populations have the same location?
The Mann-Whitney U-test

In Chapter 5, “The t-Test”, you learned how to test to see if two

samples came from populations with the same mean by using the
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t-test. If your samples are small and you are not sure if the original

populations are normal, or if your data do not measure intervals,

you cannot use that t-test because the sample t-scores will not

follow the sampling distribution in the t-table. Though there are

two different data problems that keep you from using the t-test, the

solution to both problems is the same, the non-parametric Mann-

Whitney U-test. The basic idea behind the test is to put the samples

together, rank the members of the combined sample, and then see

if the two samples are mixed together in the common ranking.

Once you have a single ranked list containing the members of

both samples, you are ready to conduct a Mann-Whitney U-test.

This test is based on a simple idea. If the first part of the combined

ranking is largely made up of members from one sample, and the

last part is largely made up of members from the other sample,

then the two samples are probably from populations with different

averages and therefore different locations. You can test to see if

the members of one sample are lumped together or spread through

the ranks by adding up the ranks of each of the two groups and

comparing the sums. If these rank sums are about equal, the two

groups are mixed together. If these ranks sums are far from equal,

each of the samples is lumped together at the beginning or the end

of the overall ranking.

Willy works for an immigration consulting company in Ottawa

that helps new immigrants who apply under the Canadian federal

government’s Immigrant Investor Program (IIP). IIP facilitates the

immigration process for those who choose to live in small cities.

The company tasked Willy to set up a new office in a location

close to the places where more potential newcomer investors will

choose to settle down. Attractive small cities (less than 100,000

population) in Canada offer unique investing opportunities for these

newcomers. After consulting with the company, Willy agrees that

the new regional office for the immigration consulting services will

be moved to a smaller city.

Before he starts looking at office buildings and other major

factors, Willy needs to decide if more small cities for which the
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newcomers are qualified are located in the eastern or the western

part of Canada. Willy finds his data on www.moneysense.ca/

canadas-best-places-to-live-2014-full-ranking, which lists the best

cities for living in Canada. He selects the top ten small cities from

the list on this website. Table 7.1 shows the top 18 Canadian small

cities along with their populations and ranks.

Table 7.1 Top 18 Canadian Small Cities along with Their Populations and
Ranks

Row Cities Populations Locations Ranks

1 St. Albert, AB 64,377 West 1

2 Strathcona County, AB 98,232 West 2

3 Boucherville, QC 41,928 East 6

4 Lacombe, AB 12,510 West 17

5 Rimouski, QC 53,000 East 18

6 Repentigny, QC 85,425 East 20

7 Blainville, QC 57,058 East 21

8 Fredericton, NB 99,066 East 22

9 Stratford, ON 32,217 East 23

10 Aurora, ON 56,697 East 24

11 North Vancouver, B.C. (District
Municipality) 88,085 West 25

12 North Vancouver, B.C. (City) 51,650 West 28

13 Halton Hills, ON 62,493 East 29

14 Newmarket, ON 84,902 East 31

15 Red Deer, AB 96,650 West 33

16 West Vancouver, B.C. 44,226 West 36

17 Brossard, QC 83,800 East 38

18 Camrose, AB 18,435 West 40

Ten of the top 18 are in the east, and eight are in the west, but these

ten represent only a sample of the market. It looks like the eastern

places tend to be higher in the top ten, but is that really the case?
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If you add up the ranks, the ten eastern cities have rank sum of 92

while the western cities have a rank sum of 79, but there are more

eastern cities, and even if there were the same number, would that

difference be due to a different average in the rankings, or is it just

due to sampling?

The Mann-Whitney U-test can tell you if the rank sum of 79 for

the western cities is significantly less than would be expected if

the two groups really were about the same and 10 of the 18 in the

sample happened to be from the same group. The general formula

for computing the Mann-Whitney U for the first of two groups is:

where

T1 = the sum of the ranks of group 1

n1 = the number of members of the sample from group 1

n2 = the number of members of the sample from group 2

This formula seems strange at first, but a little careful thought

will show you what is going on. The last third of the formula, –T1,

subtracts the rank sum of the group from the rest of the formula.

What is the first two-thirds of the formula? The bigger the total

of your two samples, and the more of that total that is in the first

group, the bigger you would expect T1 to be, everything else being

equal. Looking at the first two-thirds of the formula, you can see

that the only variables in it are n1 and n2, the sizes of the two

samples. The first two-thirds of the formula depends on the how big

the total group is and how it is divided between the two samples.

If either n1 or n2 gets larger, so does this part of the formula. The

first two-thirds of the formula is the maximum value for T1, the rank

sum of group 1. T1 will be at its maximum if the members of the

first group were all at the bottom of the rankings for the combined

samples. The U1 score then is the difference between the actual

rank sum and the maximum possible. A bigger U1 means that the

members of group 1 are bunched more at the top of the rankings

and a smaller U1 means that the members of group 1 are bunched

near the bottom of the rankings so that the rank sum is close to its

maximum. Obviously, a U-score can be computed for either group,
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so there is always a U1 and a U2. If U1 is larger, U2 is smaller for a

given n1 and n2 because if T1 is smaller, T2 is larger.

What should Willy expect if the best cities are in one region rather

than being evenly distributed across the country? If the best cities

are evenly distributed, then the eastern group and the western

group should have U’s that are close together, since neither group

will have a T that is close to either its minimum or its maximum. If

one group is mostly at the top of the list, then that group will have

a larger U since its T will be small, and the other group will have a

smaller U since its T will be large. U1 + U2 is always equal to n1n2, so

either one can be used to test the hypothesis that the two groups

come from the same population. Though there is always a pair of

U-scores for any Mann-Whitney U-test, the published tables only

show the smaller of the pair. Like all of the other tables you have

used, this one shows what the sampling distribution of U’s is like.

The sampling distribution, and this test, were first described by

H.B. Mann and D.R. Whitney (1947).1 While you have to compute

both U-scores, you only use the smaller one to test a two-tailed

hypothesis. Because the tables only show the smaller U, you need to

be careful when conducting a one-tail test. Because you will accept

the alternative hypothesis if U is very small, you use the U computed

for that sample, which Ha says is farther down the list. You are

testing to see if one of the samples is located to the right of the

other, so you test to see if the rank sum of that sample is large

enough to make its U small enough to accept Ha. If you learn to

think through this formula, you will not have to memorize all of this

detail because you will be able to figure out what to do.

Let us return to Willy’s problem. He needs to test to see if the best

cities in which to locate the office are concentrated in one part of

1. Mann, H.B., & Whitney, D.R. (1947). On a test of whether

one or two random variables is stochastically larger than

the other. Annals of Mathematical Statistics, 18, 50-60.
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the country or not. He can attack his problem with a hypothesis test

using the Mann-Whitney U-test. His hypotheses are:

Ho: The distributions of eastern and western city rankings among

the “best places for new investors” are the same.

Ha: The distributions are different.

Remembering the formula from above, he finds his two U-values:

He calculates the U for the eastern cities:

and for the western cities:

The smaller of his two U-scores is Uw = 37. This is known as

a Mann-Whitney test statistic. Because 37 is larger than 14, his

decision rule tells him that the data support the null hypothesis

that eastern and western cities rank about the same. All these

calculations can also be performed within the interactive Excel

template provided in Figure 7.1.

An interactive or media element has been excluded

from this version of the text. You can view it online

here: https://pressbooks.nscc.ca/

introductorybusinessstatistics/?p=48

Figure 7.1 Interactive Excel Template for the Mann-Whitney U-Test

– see Appendix 7.

This template has two worksheets. In the first worksheet, named

“DATA”, you need to use the drop-down list tab under column E

(Locations), select Filter, and then checkmark East. This will filter

all the data and select only cities located in eastern Canada. Simply
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copy (Ctrl+c) the created data from the next column F (Ranks). Now,

move to the next worksheet, named “Mann-Whitney U-Test”, and

paste (Ctrl+v) into the East column. Repeat these steps to create

your data for western cities and paste them into the West column

on the Mann-Whitney U-Test worksheet. As you paste these data,

the ranks of all these cities will instantly be created in the next two

columns. In the final step, type in your alpha, either .05 or .01. The

appropriate final decision will automatically follow. As you can see

on the decision cell in the template, Ho will not be rejected. This

result indicates that we arrive at the same conclusions as above:

Willy decides that the new regional immigration consulting office

can be in either an eastern or western city, at least based on the

best places for new investors to Canada. The decision will depend

on office cost and availability, airline schedules, etc.

Testing with matched pairs: the Wilcoxon
signed ranks test

During your career, you will often be interested in finding out if

the same population is different in different situations. Do the same

workers perform better after a training session? Do customers who

used one of your products prefer the “new improved” version? Are

the same characteristics important to different groups? When you

are comparing the same group in two different situations, you have

“matched pairs”. For each member of the population or sample you

have what happened under two different sets of conditions.

There is a non-parametric test using matched pairs that allows

you to see if the location of the population is different in the

different situations. This test is the Wilcoxon signed ranks test. To

understand the basis of this test, think about a group of subjects

who are tested under two sets of conditions, A and B. Subtract the

test score under B from the test score under A for each subject.
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Rank the subjects by the absolute size of that difference, and look to

see if those who scored better under A are mostly lumped together

at one end of your ranking. If most of the biggest absolute

differences belong to subjects who scored higher under one of the

sets of conditions, then the subjects probably perform differently

under A than under B.

The details of how to perform this test were published by Frank

Wilcoxon (1945).2 He found a method to find out if the subjects

who scored better under one of the sets of conditions were lumped

together or not. He also found the sampling distribution needed

to test hypotheses based on the rankings. To use Wilcoxon’s test,

collect a sample of matched pairs. For each subject, find the

difference in the outcome between the two sets of conditions and

then rank the subjects according to the absolute value of the

differences. Next, add together the ranks of those with negative

differences and add together the ranks of those with positive

differences. If these rank sums are about the same, then the subjects

who did better under one set of conditions are mixed together with

those who did better under the other set of conditions, and there

is no difference. If the rank sums are far apart, then there is a

difference between the two sets of conditions.

Because the sum of the rank sums is always equal to [N(N-1)]/2],

if you know the rank sum for either the positives or the negatives,

you know it for the other. This means that you do not really have

to compare the rank sums; you can simply look at the smallest and

see if it is very small to see if the positive and negative differences

are separated or mixed together. The sampling distribution of the

smaller rank sums when the populations the samples come from are

the same was published by Wilcoxon. A portion of a table showing

this sampling distribution is in Table 7.2.

2. Wilcoxon, F. (1945). Individual comparisons by ranking

methods. Biometrics, 1(6), 80-83.
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Table 7.2 Sampling Distribution

One-Tail Significance .05 .025 .01

Two-Tail Significance .1 .05 .02

Number of Pairs, N

5 0

6 2 0

7 3 2 0

8 5 3 1

9 8 5 3

10 10 8 5

Wendy Woodruff is the president of the Student Accounting Society

at Thompson Rivers University (TRU) in Kamloops, BC. Wendy

recently came across a study by Baker and McGregor [Empirically

assessing the utility of accounting student characteristics,

unpublished, 1993] in which both accounting firm partners and

students were asked to score the importance of student

characteristics in the hiring process. A summary of their findings is

in Table 7.3.

Table 7.3 Data on Importance of Student Attributes

Attribute Mean: Student
Rating

Mean: Big Firm
Rating

High Accounting GPA 2.06 2.56

High Overall GPA .08 -.08

Communication Skills 4.15 4.25

Personal Integrity 4.27 7.5

Energy, drive,
enthusiasm 4.82 3.15

Appearance 2.68 2.31

Data source: Baker and McGregor

Wendy is wondering if the two groups think the same things are
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important. If the two groups think that different things are

important, Wendy will need to have some society meetings devoted

to discussing the differences. Wendy has read over the article, and

while she is not exactly sure how Baker and McGregor’s scheme for

rating the importance of student attributes works, she feels that the

scores are probably not distributed normally. Her test to see if the

groups rate the attributes differently will have to be non-parametric

since the scores are not normally distributed and the samples are

small. Wendy uses the Wilcoxon signed ranks test.

Her hypotheses are:

Ho: There is no true difference between what students and Big 6

partners think is important.

Ha: There is a difference.

She decides to use a level of significance of .05. Wendy’s test is a

two-tail test because she wants to see if the scores are different, not

if the Big 6 partners value these things more highly. Looking at the

table, she finds that, for a two-tail test, the smaller of the two sums

of ranks must be less than or equal to 2 to accept Ha.

Wendy finds the differences between student and Big 6 scores,

and ranks the absolute differences, keeping track of which are

negative and which are positive. She then sums the positive ranks

and sums the negative ranks. Her work is shown in Table 7.4.
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Table 7.4 The Worksheet for the Wilcoxon Signed Ranks Test

Attribute Mean Student
Rating

Mean Big Firm
Rating Difference Rank

High Accounting
GPA 2.06 2.56 -.5 -4

High Overall GPA .08 -.08 .16 2

Communication
Skills 4.15 4.25 -.1 -1

Personal Integrity 4.27 7.5 -2.75 -6

Energy, drive,
enthusiasm 4.82 3.15 1.67 5

Appearance 2.68 2.31 .37 3

sum of positive ranks = 2+5+3=10

sum of negative ranks = 4+1+6=11

number of
pairs=6

Her sample statistic, T, is the smaller of the two sums of ranks,

so T=10. According to her decision rule to accept Ha if T < 2, she

decides that the data support Ho that there is no difference in what

students and Big 6 firms think is important to look for when hiring

students. This makes sense, because the attributes that students

score as more important, those with positive differences, and those

that the Big 6 score as more important, those with negative

differences, are mixed together when the absolute values of the

differences are ranked. Notice that using the rankings of the

differences rather than the size of the differences reduces the

importance of the large difference between the importance

students and Big 6 partners place on personal integrity. This is

one of the costs of using non-parametric statistics. The Student

Accounting Society at TRU does not need to have a major program

on what accounting firms look for in hiring. However, Wendy thinks

that the discrepancy in the importance in hiring placed on personal

integrity by Big 6 firms and the students means that she needs
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to schedule a speaker on that subject. Wendy wisely tempers her

statistical finding with some common sense.

Are these two variables related? Spearman’s rank
correlation

Are sales higher in those geographic areas where more is spent

on advertising? Does spending more on preventive maintenance

reduce downtime? Are production workers with more seniority

assigned the most popular jobs? All of these questions ask how

the two variables move up and down together: When one goes

up, does the other also rise? When one goes up does the other

go down? Does the level of one have no effect on the level of the

other? Statisticians measure the way two variables move together

by measuring the correlation coefficient between the two.

Correlation will be discussed again in the next chapter, but it will

not hurt to hear about the idea behind it twice. The basic idea is

to measure how well two variables are tied together. Simply looking

at the word, you can see that it means co-related. If whenever

variable X goes up by 1, variable Y changes by a set amount, then

X and Y are perfectly tied together, and a statistician would say

that they are perfectly correlated. Measuring correlation usually

requires interval data from normal populations, but a procedure to

measure correlation from ranked data has been developed. Regular

correlation coefficients range from -1 to +1. The sign tells you if the

two variables move in the same direction (positive correlation) or in

opposite directions (negative correlation) as they change together.

The absolute value of the correlation coefficient tells you how

closely tied together the variables are; a correlation coefficient

close to +1 or to -1 means they are closely tied together, a correlation

coefficient close to 0 means that they are not very closely tied

together. The non-parametric Spearman’s rank correlation

coefficient is scaled so that it follows these same conventions.
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The true formula for computing the Spearman’s rank correlation

coefficient is complex. Most people using rank correlation compute

the coefficient with a computer program, but looking at the

equation will help you see how Spearman’s rank correlation works.

It is:

where:

n = the number of observations

d = the difference between the ranks for an observation

Keep in mind that we want this non-parametric correlation

coefficient to range from -1 to +1 so that it acts like the parametric

correlation coefficient. Now look at the equation. For a given sample

size n, the only thing that will vary is Σd2. If the samples are perfectly

positively correlated, then the same observation will be ranked first

for both variables, another observation ranked second for both

variables, etc. That means that each difference in ranks d will be

zero, the numerator of the fraction at the end of the equation will be

zero, and that fraction will be zero. Subtracting zero from one leaves

one, so if the observations are ranked in the same order by both

variables, the Spearman’s rank correlation coefficient is +1. Similarly,

if the observations are ranked in exactly the opposite order by

the two variables, there will many large d2’s, and Σd2 will be at its

maximum. The rank correlation coefficient should equal -1, so you

want to subtract 2 from 1 in the equation. The middle part of the

equation, 6/n(n2-1), simply scales Σd2 so that the whole term equals

2. As n grows larger, Σd2 will grow larger if the two variables produce

exactly opposite rankings. At the same time, n(n2-1) will grow larger

so that 6/n(n2-1) will grow smaller.

Located in Saskatchewan, Robin Hood Company produces flour,

corn meal, grits, and muffin, cake, and quickbread mixes. In order

to increase its market share to the United States, the company is

considering introducing a new product, Instant Cheese Grits mix.

Cheese grits is a dish made by cooking grits, combining the cooked
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grits with cheese and eggs, and then baking the mixture. It is a

southern favourite in the United States, but because it takes a long

time to cook, it is not served much anymore. The Robin Hood mix

will allow someone to prepare cheese grits in 20 minutes in only

one pan, so if it tastes right, the product should sell well in the

southern United States along with other parts of North America.

Sandy Owens is the product manager for Instant Cheese Grits and

is deciding what kind of cheese flavouring to use. Nine different

cheese flavourings have been successfully tested in production, and

samples made with each of those nine flavourings have been rated

by two groups: first, a group of food experts, and second, a group

of potential customers. The group of experts was given a taste of

three dishes of “homemade” cheese grits and ranked the samples

according to how well they matched the real thing. The customers

were given the samples and asked to rank them according to how

much they tasted like “real cheese grits should taste”. Over time,

Robin Hood has found that using experts is a better way of

identifying the flavourings that will make a successful product, but

they always check the experts’ opinion against a panel of customers.

Sandy must decide if the experts and customers basically agree. If

they do, then she will use the flavouring rated first by the experts.

The data from the taste tests are in Table 7.5.
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Table 7.5 Data from Two Taste Tests of Cheese
Flavourings

Flavouring Expert Ranking Consumer Ranking

NYS21 7 8

K73 4 3

K88 1 4

Ba4 8 6

Bc11 2 5

McA A 3 1

McA A 9 9

WIS 4 5 2

WIS 43 6 7

Sandy decides to use the SAS statistical software that Robin Hood

has purchased. Her hypotheses are:

Ho: The correlation between the expert and consumer rankings is

zero or negative.

Ha: The correlation is positive.

Sandy will decide that the expert panel does know best if the data

support Ha that there is a positive correlation between the experts

and the consumers. She goes to a table that shows what value of the

Spearman’s rank correlation coefficient will separate one tail from

the rest of the sampling distribution if there is no association in the

population. A portion is shown in Table 7.6.
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Table 7.6 Some One-Tail
Critical Values for
Spearman’s Rank

Correlation Coefficient

n α=.05 α=.025 α=.10

5 .9

6 .829 .886 .943

7 .714 .786 .893

8 .643 .738 .833

9 .6 .683 .783

10 .564 .648 .745

11 .523 .623 .736

12 .497 .591 .703

Using α = .05, going across the n = 9 row in Table 7.6, Sandy sees

that if Ho is true, only .05 of all samples will have an rs greater than

.600. Sandy decides that if her sample rank correlation is greater

than .600, the data support the alternative, and flavouring K88, the

one ranked highest by the experts, will be used. She first goes back

to the two sets of rankings and finds the difference in the rank given

each flavour by the two groups, squares those differences, and adds

them together, as shown in Table 7.7.
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Table 7.7 Sandy’s Worksheet

Flavouring Expert ranking Consumer ranking Difference d²

NYS21 7 8 -1 1

K73 4 3 1 1

K88 1 4 -3 9

Ba4 8 6 2 4

Bc11 2 5 -3 9

McA A 3 1 2 4

McA A 9 9 0 0

WIS 4 5 2 3 9

WIS 43 6 7 -1 1

Sum 38

Then she uses the formula from above to find her Spearman rank

correlation coefficient:

Her sample correlation coefficient is .6834, greater than .600,

so she decides that the experts are reliable and decides to use

flavouring K88. Even though Sandy has ordinal data that only rank

the flavourings, she can still perform a valid statistical test to see

if the experts are reliable. Statistics have helped another manager

make a decision.

Summary

Though they are less precise than other statistics, non-parametric

statistics are useful. You will find yourself faced with small samples,

populations that are obviously not normal, and data that are not

cardinal. At those times, you can still make inferences about

populations from samples by using non-parametric statistics.

Non-parametric statistical methods are also useful because they
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can often be used without a computer, or even a calculator. The

Mann-Whitney U-test and the t-test for the difference of sample

means test the same thing. You can usually perform the U-test

without any computational help, while performing a t-test without

at least a good calculator can take a lot of time. Similarly, the

Wilcoxon signed rank test and Spearman’s rank correlation are easy

to compute once the data have been carefully ranked. Though you

should proceed to the parametric statistics when you have access

to a computer or calculator, in a pinch you can use non-parametric

methods for a rough estimate.

Notice that each different non-parametric test has its own table.

When your data are not cardinal, or your populations are not

normal, the sampling distributions of each statistic is different. The

common distributions, the t, the χ2, and the F, cannot be used.

Non-parametric statistics have their place. They do not require

that we know as much about the population, or that the data

measure as much about the observations. Even though they are less

precise, they are often very useful.
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8. Chapter 8. Regression
Basics

Regression analysis, like most multivariate statistics, allows you to

infer that there is a relationship between two or more variables.

These relationships are seldom exact because there is variation

caused by many variables, not just the variables being studied.

If you say that students who study more make better grades, you

are really hypothesizing that there is a positive relationship between

one variable, studying, and another variable, grades. You could then

complete your inference and test your hypothesis by gathering a

sample of (amount studied, grades) data from some students and

use regression to see if the relationship in the sample is strong

enough to safely infer that there is a relationship in the population.

Notice that even if students who study more make better grades,

the relationship in the population would not be perfect; the same

amount of studying will not result in the same grades for every

student (or for one student every time). Some students are taking

harder courses, like chemistry or statistics; some are smarter; some

study effectively; and some get lucky and find that the professor

has asked them exactly what they understood best. For each level

of amount studied, there will be a distribution of grades. If there

is a relationship between studying and grades, the location of that

distribution of grades will change in an orderly manner as you move

from lower to higher levels of studying.

Regression analysis is one of the most used and most powerful

multivariate statistical techniques for it infers the existence and

form of a functional relationship in a population. Once you learn

how to use regression, you will be able to estimate the parameters

— the slope and intercept — of the function that links two or more

variables. With that estimated function, you will be able to infer or

forecast things like unit costs, interest rates, or sales over a wide
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range of conditions. Though the simplest regression techniques

seem limited in their applications, statisticians have developed a

number of variations on regression that greatly expand the

usefulness of the technique. In this chapter, the basics will be

discussed. Once again, the t-distribution and F-distribution will be

used to test hypotheses.

What is regression?

Before starting to learn about regression, go back to algebra and

review what a function is. The definition of a function can be formal,

like the one in my freshman calculus text: “A function is a set of

ordered pairs of numbers (x,y) such that to each value of the first

variable (x) there corresponds a unique value of the second variable

(y)” (Thomas, 1960).1. More intuitively, if there is a regular

relationship between two variables, there is usually a function that

describes the relationship. Functions are written in a number of

forms. The most general is y = f(x), which simply says that the value

of y depends on the value of x in some regular fashion, though the

form of the relationship is not specified. The simplest functional

form is the linear function where:

α and β are parameters, remaining constant as x and y change.

α is the intercept and β is the slope. If the values of α and β are

known, you can find the y that goes with any x by putting the x

into the equation and solving. There can be functions where one

variable depends on the values values of two or more other variables

where x1 and x2 together determine the value of y. There can also be

1. Thomas, G.B. (1960). Calculus and analytical geometry

(3rd ed.). Boston, MA: Addison-Wesley.
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non-linear functions, where the value of the dependent variable (y
in all of the examples we have used so far) depends on the values

of one or more other variables, but the values of the other variables

are squared, or taken to some other power or root or multiplied

together, before the value of the dependent variable is determined.

Regression allows you to estimate directly the parameters in linear

functions only, though there are tricks that allow many non-linear

functional forms to be estimated indirectly. Regression also allows

you to test to see if there is a functional relationship between the

variables, by testing the hypothesis that each of the slopes has a

value of zero.

First, let us consider the simple case of a two-variable function.

You believe that y, the dependent variable, is a linear function of

x, the independent variable — y depends on x. Collect a sample of

(x, y) pairs, and plot them on a set of x, y axes. The basic idea

behind regression is to find the equation of the straight line that

comes as close as possible to as many of the points as possible.

The parameters of the line drawn through the sample are unbiased

estimators of the parameters of the line that would come as close

as possible to as many of the points as possible in the population, if

the population had been gathered and plotted. In keeping with the

convention of using Greek letters for population values and Roman

letters for sample values, the line drawn through a population is:

while the line drawn through a sample is:

y = a + bx

In most cases, even if the whole population had been gathered,

the regression line would not go through every point. Most of the

phenomena that business researchers deal with are not perfectly

deterministic, so no function will perfectly predict or explain every

observation.

Imagine that you wanted to study the estimated price for a one-

bedroom apartment in Nelson, BC. You decide to estimate the

price as a function of its location in relation to downtown. If you

collected 12 sample pairs, you would find different apartments
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located within the same distance from downtown. In other words,

you might draw a distribution of prices for apartments located at

the same distance from downtown or away from downtown. When

you use regression to estimate the parameters of price = f(distance),

you are estimating the parameters of the line that connects the

mean price at each location. Because the best that can be expected

is to predict the mean price for a certain location, researchers often

write their regression models with an extra term, the error term,

which notes that many of the members of the population of

(location, price of apartment) pairs will not have exactly the

predicted price because many of the points do not lie directly on the

regression line. The error term is usually denoted as ε, or epsilon,

and you often see regression equations written:

Strictly, the distribution of ε at each location must be normal,

and the distributions of ε for all the locations must have the same

variance (this is known as homoscedasticity to statisticians).

Simple regression and least squares method

In estimating the unknown parameters of the population for the

regression line, we need to apply a method by which the vertical

distances between the yet-to-be estimated regression line and the

observed values in our sample are minimized. This minimized

distance is called sample error, though it is more commonly referred

to as residual and denoted by e. In more mathematical form, the

difference between the y and its predicted value is the residual in

each pair of observations for x and y. Obviously, some of these

residuals will be positive (above the estimated line) and others will

be negative (below the line). If we add all these residuals over the

sample size and raise them to the power 2 in order to prevent

the chance those positive and negative signs are cancelling each

Chapter 8. Regression Basics | 125



other out, we can write the following criterion for our minimization

problem:

S is the sum of squares of the residuals. By minimizing S over any

given set of observations for x and y, we will get the following useful

formula:

After computing the value of b from the above formula out of our

sample data, and the means of the two series of data on x and y,

one can simply recover the intercept of the estimated line using the

following equation:

For the sample data, and given the estimated intercept and slope,

for each observation we can define a residual as:

Depending on the estimated values for intercept and slope, we

can draw the estimated line along with all sample data in a y–x

panel. Such graphs are known as scatter diagrams. Consider our

analysis of the price of one-bedroom apartments in Nelson, BC. We

would collect data for y=price of one bedroom apartment, x1=its

associated distance from downtown, and x2=the size of the

apartment, as shown in Table 8.1.

126 | Chapter 8. Regression Basics



Table 8.1 Data for Price, Size, and Distance of Apartments in
Nelson, BC

y = price of apartments in $1000
x1 = distance of each apartment from downtown in kilometres
x2 = size of the apartment in square feet

y x1 x2

55 1.5 350

51 3 450

60 1.75 300

75 1 450

55.5 3.1 385

49 1.6 210

65 2.3 380

61.5 2 600

55 4 450

45 5 325

75 0.65 424

65 2 285

The graph (shown in Figure 8.1) is a scatter plot of the prices of

the apartments and their distances from downtown, along with a

proposed regression line.

Figure 8.1 Scatter Plot of Price, Distance from Downtown, along with a
Proposed Regression Line
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In order to plot such a scatter diagram, you can use many available

statistical software packages including Excel, SAS, and Minitab. In

this scatter diagram, a negative simple regression line has been

shown. The estimated equation for this scatter diagram from Excel

is:

Where a=71.84 and b=-5.38. In other words, for every additional

kilometre from downtown an apartment is located, the price of the

apartment is estimated to be $5380 cheaper, i.e. 5.38*$1000=$5380.

One might also be curious about the fitted values out of this

estimated model. You can simply plug the actual value for x into

the estimated line, and find the fitted values for the prices of the

apartments. The residuals for all 12 observations are shown in Figure

8.2.
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Figure 8.2

You should also notice that by minimizing errors, you have not

eliminated them; rather, this method of least squares only
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guarantees the best fitted estimated regression line out of the

sample data.

In the presence of the remaining errors, one should be aware

of the fact that there are still other factors that might not have

been included in our regression model and are responsible for the

fluctuations in the remaining errors. By adding these excluded but

relevant factors to the model, we probably expect the remaining

error will show less meaningful fluctuations. In determining the

price of these apartments, the missing factors may include age

of the apartment, size, etc. Because this type of regression model

does not include many relevant factors and assumes only a linear

relationship, it is known as a simple linear regression model.

Testing your regression: does y really depend on
x?

Understanding that there is a distribution of y (apartment price)

values at each x (distance) is the key for understanding how

regression results from a sample can be used to test the hypothesis

that there is (or is not) a relationship between x and y. When you

hypothesize that y = f(x), you hypothesize that the slope of the

line (β in y = α + βx + ε) is not equal to zero. If β was equal to

zero, changes in x would not cause any change in y. Choosing a

sample of apartments, and finding each apartment’s distance to

downtown, gives you a sample of (x, y). Finding the equation of the

line that best fits the sample will give you a sample intercept, α, and

a sample slope, β. These sample statistics are unbiased estimators

of the population intercept, α, and slope, β. If another sample of the

same size is taken, another sample equation could be generated.

If many samples are taken, a sampling distribution of sample β’s,

the slopes of the sample lines, will be generated. Statisticians know

that this sampling distribution of b’s will be normal with a mean

equal to β, the population slope. Because the standard deviation of
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this sampling distribution is seldom known, statisticians developed

a method to estimate it from a single sample. With this estimated sb,

a t-statistic for each sample can be computed:

where n = sample size

m = number of explanatory (x) variables

b = sample slope

β= population slope

sb = estimated standard deviation of b’s, often called the standard
error

These t’s follow the t-distribution in the tables with n–m-1 df.

Computing sb is tedious, and is almost always left to a computer,

especially when there is more than one explanatory variable. The

estimate is based on how much the sample points vary from the

regression line. If the points in the sample are not very close to

the sample regression line, it seems reasonable that the population

points are also widely scattered around the population regression

line and different samples could easily produce lines with quite

varied slopes. Though there are other factors involved, in general

when the points in the sample are farther from the regression line,

sb is greater. Rather than learn how to compute sb, it is more useful

for you to learn how to find it on the regression results that you get

from statistical software. It is often called the standard error and

there is one for each independent variable. The printout in Figure

8.3 is typical.
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Figure 8.3 Typical Statistical Package Output for Linear Simple Regression
Model

You will need these standard errors in order to test to see if y

depends on x or not. You want to test to see if the slope of the line

in the population, β, is equal to zero or not. If the slope equals zero,

then changes in x do not result in any change in y. Formally, for each

independent variable, you will have a test of the hypotheses:

If the t-score is large (either negative or positive), then the sample

b is far from zero (the hypothesized β), and Ha should be accepted.

Substitute zero for b into the t-score equation, and if the t-score is

small, b is close enough to zero to accept Ha. To find out what t-

value separates “close to zero” from “far from zero”, choose an alpha,

find the degrees of freedom, and use a t-table from any textbook, or

simply use the interactive Excel template from Chapter 3, which is

shown again in Figure 8.4.
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An interactive or media element has been excluded

from this version of the text. You can view it online

here: https://pressbooks.nscc.ca/

introductorybusinessstatistics/?p=86

Figure 8.4 Interactive Excel Template for Determining t-Value from

the t-Table – see Appendix 8.

Remember to halve alpha when conducting a two-tail test like this.

The degrees of freedom equal n – m -1, where n is the size of the

sample and m is the number of independent x variables. There is a

separate hypothesis test for each independent variable. This means

you test to see if y is a function of each x separately. You can also

test to see if β > 0 (or β < 0) rather than β ≠ 0 by using a one-tail test,

or test to see if β equals a particular value by substituting that value

for β when computing the sample t-score.

Testing your regression: does this equation really
help predict?

To test to see if the regression equation really helps, see how much

of the error that would be made using the mean of all of the y’s to

predict is eliminated by using the regression equation to predict. By

testing to see if the regression helps predict, you are testing to see

if there is a functional relationship in the population.

Imagine that you have found the mean price of the apartments in

our sample, and for each apartment, you have made the simple

prediction that price of apartment will be equal to the sample mean,

y. This is not a very sophisticated prediction technique, but
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remember that the sample mean is an unbiased estimator of

population mean, so on average you will be right. For each

apartment, you could compute your error by finding the difference

between your prediction (the sample mean, y) and the actual

price of an apartment.

As an alternative way to predict the price, you can have a

computer find the intercept, α, and slope, β, of the sample

regression line. Now, you can make another prediction of how much

each apartment in the sample may be worth by computing:

Once again, you can find the error made for each apartment by

finding the difference between the price of apartments predicted

using the regression equation ŷ, and the observed price, y. Finally,

find how much using the regression improves your prediction by

finding the difference between the price predicted using the mean,

y, and the price predicted using regression, ŷ. Notice that the

measures of these differences could be positive or negative

numbers, but that error or improvement implies a positive distance.

Coefficient of Determination

If you use the sample mean to predict the amount of the price

of each apartment, your error is (y–y) for each apartment. Squaring

each error so that worries about signs are overcome, and then

adding the squared errors together, gives you a measure of the

total mistake you make if you want to predict y. Your total mistake

is Σ(y–y)2. The total mistake you make using the regression model

would be Σ(y-ŷ)2. The difference between the mistakes, a raw

measure of how much your prediction has improved, is Σ(ŷ–y)2. To

make this raw measure of the improvement meaningful, you need

to compare it to one of the two measures of the total mistake. This

means that there are two measures of “how good” your regression

equation is. One compares the improvement to the mistakes still
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made with regression. The other compares the improvement to the

mistakes that would be made if the mean was used to predict. The

first is called an F-score because the sampling distribution of these

measures follows the F-distribution seen in Chapter 6, “F-test and

One-Way ANOVA”. The second is called R2, or the coefficient of
determination.

All of these mistakes and improvements have names, and talking

about them will be easier once you know those names. The total

mistake made using the sample mean to predict, Σ(y–y)2, is called

the sum of squares, total. The total mistake made using the

regression, Σ(y-ŷ)2, is called the sum of squares, error (residual).
The general improvement made by using regression, Σ(ŷ–y)2 is called

the sum of squares, regression or sum of squares, model. You

should be able to see that:

sum of squares, total = sum of squares, regression + sum of

squares, error (residual)

ŷ ŷ
In other words, the total variations in y can be partitioned into

two sources: the explained variations and the unexplained

variations. Further, we can rewrite the above equation as:

where SST stands for sum of squares due to total variations, SSR

measures the sum of squares due to the estimated regression model

that is explained by variable x, and SSE measures all the variations

due to other factors excluded from the estimated model.

Going back to the idea of goodness of fit, one should be able

to easily calculate the percentage of each variation with respect

to the total variations. In particular, the strength of the estimated

regression model can now be measured. Since we are interested

in the explained part of the variations by the estimated model, we

simply divide both sides of the above equation by SST, and we get:
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We then isolate this equation for the explained proportion, also

known as R-square:

Only in cases where an intercept is included in a simple

regression model will the value of R2 be bounded between zero and

one. The closer R2 is to one, the stronger the model is. Alternatively,

R2 is also found by:

This is the ratio of the improvement made using the regression

to the mistakes made using the mean. The numerator is the

improvement regression makes over using the mean to predict; the

denominator is the mistakes (errors) made using the mean. Thus R2

simply shows what proportion of the mistakes made using the mean

are eliminated by using regression.

In the case of the market for one-bedroom apartments in Nelson,

BC, the percentage of the variations in price for the apartments is

estimated to be around 50%. This indicates that only half of the

fluctuations in apartment prices with respect to the average price

can be explained by the apartments’ distance from downtown. The

other 50% are not controlled (that is, they are unexplained) and are

subject to further research. One typical approach is to add more

relevant factors to the simple regression model. In this case, the

estimated model is referred to as a multiple regression model.

While R2 is not used to test hypotheses, it has a more intuitive

meaning than the F-score. The F-score is the measure usually used

in a hypothesis test to see if the regression made a significant

improvement over using the mean. It is used because the sampling

distribution of F-scores that it follows is printed in the tables at the

back of most statistics books, so that it can be used for hypothesis

testing. It works no matter how many explanatory variables are

used. More formally, consider a population of multivariate
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observations, (y, x1, x2, …, xm), where there is no linear relationship

between y and the x’s, so that y ≠ f(y, x1, x2, …, xm). If samples of

n observations are taken, a regression equation estimated for each

sample, and a statistic, F, found for each sample regression, then

those F’s will be distributed like those shown in Figure 8.5, the F-

table with (m, n–m-1) df.

An interactive or media element has been excluded

from this version of the text. You can view it online

here: https://pressbooks.nscc.ca/

introductorybusinessstatistics/?p=86

Figure 8.5 Interactive Excel Template of an F-Table – see Appendix

8.

The value of F can be calculated as:

where n is the size of the sample, and m is the number of
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explanatory variables (how many x’s there are in the regression

equation).

If Σ(ŷ–y)2 the sum of squares regression (the improvement), is

large relative to Σ(ŷ–y)3, the sum of squares residual (the mistakes

still made), then the F-score will be large. In a population where

there is no functional relationship between y and the x’s, the

regression line will have a slope of zero (it will be flat), and the ŷ will

be close to y. As a result very few samples from such populations

will have a large sum of squares regression and large F-scores.

Because this F-score is distributed like the one in the F-tables,

the tables can tell you whether the F-score a sample regression

equation produces is large enough to be judged unlikely to occur

if y ≠ f(y, x1, x2, …, xm). The sum of squares regression is divided

by the number of explanatory variables to account for the fact that

it always decreases when more variables are added. You can also

look at this as finding the improvement per explanatory variable.

The sum of squares residual is divided by a number very close to

the number of observations because it always increases if more

observations are added. You can also look at this as the approximate

mistake per observation.

To test to see if a regression equation was worth estimating, test

to see if there seems to be a functional relationship:

This might look like a two-tailed test since Ho has an equal sign.

But, by looking at the equation for the F-score you should be able

to see that the data support Ha only if the F-score is large. This is

because the data support the existence of a functional relationship

if the sum of squares regression is large relative to the sum of

squares residual. Since F-tables are usually one-tail tables, choose

an α, go to the F-tables for that α and (m, n–m-1) df, and find

the table F. If the computed F is greater than the table F, then

the computed F is unlikely to have occurred if Ho is true, and you

can safely decide that the data support Ha. There is a functional

relationship in the population.
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Now that you have learned all the necessary steps in estimating

a simple regression model, you may take some time to re-estimate

the Nelson apartment model or any other simple regression model,

using the interactive Excel template shown in Figure 8.6. Like all

other interactive templates in this textbook, you can change the

values in the yellow cells only. The result will be shown

automatically within this template. For this template, you can only

estimate simple regression models with 30 observations. You use

special paste/values when you paste your data from other

spreadsheets. The first step is to enter your data under independent

and dependent variables. Next, select your alpha level. Check your

results in terms of both individual and overall significance. Once

the model has passed all these requirements, you can select an

appropriate value for the independent variable, which in this

example is the distance to downtown, to estimate both the

confidence intervals for the average price of such an apartment,

and the prediction intervals for the selected distance. Both these

intervals are discussed later in this chapter. Remember that by

changing any of the values in the yellow areas in this template, all

calculations will be updated, including the tests of significance and

the values for both confidence and prediction intervals.

An interactive or media element has been excluded

from this version of the text. You can view it online

here: https://pressbooks.nscc.ca/

introductorybusinessstatistics/?p=86

Figure 8.6 Interactive Excel Template for Simple Regression – see

Appendix 8.
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Multiple Regression Analysis

When we add more explanatory variables to our simple regression

model to strengthen its ability to explain real-world data, we in fact

convert a simple regression model into a multiple regression model.

The least squares approach we used in the case of simple regression

can still be used for multiple regression analysis.

As per our discussion in the simple regression model section, our

low estimated R2 indicated that only 50% of the variations in the

price of apartments in Nelson, BC, was explained by their distance

from downtown. Obviously, there should be more relevant factors

that can be added into this model to make it stronger. Let’s add the

second explanatory factor to this model. We collected data for the

area of each apartment in square feet (i.e., x2). If we go back to Excel

and estimate our model including the new added variable, we will

see the printout shown in Figure 8.7.

Figure 8.7 Excel Printout

The estimates equation of the regression model is:
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predicted price of apartments= 60.041 – 5.393*distance +

.03*area

This is the equation for a plane, the three-dimensional equivalent

of a straight line. It is still a linear function because neither of the

x’s nor y is raised to a power nor taken to some root nor are the x’s

multiplied together. You can have even more independent variables,

and as long as the function is linear, you can estimate the slope, β,

for each independent variable.

Before using this estimated model for prediction and decision-

making purposes, we should test three hypotheses. First, we can

use the F-score to test to see if the regression model improves

our ability to predict price of apartments. In other words, we test

the overall significance of the estimated model. Second and third,

we can use the t-scores to test to see if the slopes of distance and

area are different from zero. These two t-tests are also known as

individual tests of significance.

To conduct the first test, we choose an α = .05. The F-score is the

regression or model mean square over the residual or error mean

square, so the df for the F-statistic are first the df for the regression

model and, second, the df for the error. There are 2 and 9 df for the

F-test. According to this F-table, with 2 and 9 df, the critical F-score

for α = .05 is 4.26.

The hypotheses are:

H0: price ≠ f(distance, area)

Ha: price = f(distance, area)

Because the F-score from the regression, 6.812, is greater than

the critical F-score, 4.26, we decide that the data support Ho and

conclude that the model helps us predict price of apartments.

Alternatively, we say there is such a functional relationship in the

population.

Now, we move to the individual test of significance. We can test

to see if price depends on distance and area. There are (n-

m-1)=(12-2-1)=9 df. There are two sets of hypotheses, one set for β1,

the slope for distance, and one set for β2, the slope for area. For a

small town, one may expect that β1, the slope for distance, will be
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negative, and expect that β2 will be positive. Therefore, we will use a

one-tail test on β1, as well as for β2:

Since we have two one-tail tests, the t-values we choose from

the t-table will be the same for the two tests. Using α = .05 and 9

df, we choose .05/2=.025 for the t-score for β1 with a one-tail test,

and come up with 2.262. Looking back at our Excel printout and

checking the t-scores, we decide that distance does affect price of

apartments, but area is not a significant factor in explaining the

price of apartments. Notice that the printout also gives a t-score for

the intercept, so we could test to see if the intercept equals zero or

not.

Alternatively, one may go ahead and compare directly the

p-values out of the Excel printout against the assumed level of

significance (i.e., α = .05). We can easily see that the p-values

associated with the intercept and price are both less than alpha,

and as a result we reject the hypothesis that the

associated coefficients are zero (i.e., both are significant). However,

area is not a significant factor since its associated p-value is greater

than alpha.

While there are other required assumptions and conditions in

both simple and multiple regression models (we encourage students

to consult an intermediate business statistics open textbook for

more detailed discussions), here we only focus on two relevant

points about the use and applications of multiple regression.

The first point is related to the interpretation of the estimated

coefficients in a multiple regression model. You should be careful

to note that in a simple regression model, the estimated coefficient

of our independent variable is simply the slope of the line and can

be interpreted. It refers to the response of the dependent variable

to a one-unit change in the independent variable. However, this

interpretation in a multiple regression model should be adjusted

slightly. The estimated coefficients under multiple regression

analysis are the response of the dependent variable to a one-unit

change in one of the independent variables when the levels of all
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other independent variables are kept constant. In our example, the

estimated coefficient of price of an apartment in Nelson, BC,

indicates that — for a given size of apartment— it will drop

by 5.248*1000=$5248 for every one kilometre that the apartment is

away from downtown.

The second point is about the use of R2 in multiple regression

analysis. Technically, adding more independent variables to the

model will increase the value of R2, regardless of whether the added

variables are relevant or irrelevant in explaining the variation in

the dependent variable. In order to adjust the inflated R2 due to

the irrelevant variables added to the model, the following formula is

recommended in the case of multiple regression:

image

where n is the sample size, and k is number of the estimated

parameters in our model.

Back to our earlier Excel results for the multiple regression model

estimated for the apartment example, we can see that while the R2

has been inflated from .504 to .612 due to the new added factor,

apartment size, the adjusted R2 has dropped the inflated value

to .526. To understand it better, you should pay attention to the

associated p-value for the newly added factor. Since this value is

more than .05, we cannot reject the hypothesis that the true

coefficient of apartment size (area) is significantly different from

zero. In other words, in its current situation, apartment size is not a

significant factor, yet the value of R2 has been inflated!

Furthermore, the adjusted R2 indicates that only 61.2% of

variations in price of one-bedroom apartments in Nelson, BC, can

be explained by their locations and sizes. Almost 40% of the

variations of the price still cannot be explained by these two factors.

One may seek to improve this model, by searching for more relevant

factors such as style of the apartment, year built, etc. and add them

in to this model.

Using the interactive Excel template shown in Figure 8.8, you

can estimate a multiple regression model. Again, enter your data

into the yellow cells only. For this template you are allowed to use
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up to 50 observations for each column. Like all other interactive

templates in this textbook, you use special paste/values when you

paste your data from other spreadsheets. Specifically, if you have

fewer than 50 data entries, you must also fill out the rest of the

empty yellow cells under X1, X2, and Y with zeros. Now, select

your alpha level. By clicking enter, you will not only have all your

estimated coefficients along with their t-values, etc., you will also

be guided as to whether the model is significant both overall and

individually. If your p-value associated with F-value within the

ANOVA table is not less than the selected alpha level, you will see

a message indicating that your estimated model is not overall

significant, and as a result, no values for C.I. and P.I. will be shown.

By either changing the alpha level and/or adding more accurate

data, it is possible to estimate a more significant multiple regression

model.

An interactive or media element has been excluded

from this version of the text. You can view it online

here: https://pressbooks.nscc.ca/

introductorybusinessstatistics/?p=86

Figure 8.8 Interactive Excel Template for Multiple Regression

Model – see Appendix 8.

One more point is about the format of your assumed multiple

regression model. You can see that the nature of the associations

between the dependent variable and all the independent variables

may not always be linear. In reality, you will face cases where such

relationships may be better formed by a nonlinear model. Without

going into the details of such a non-linear model, just to give you

an idea, you should be able to transform your selected data for X1,

X2, and Y before estimating your model. For instance, one possible
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multiple regression non-linear model may be a model in which both

the dependent and independent variables have been transformed to

a natural logarithm rather than a level. In order to estimate such a

model within Figure 8.5, all you need to do is transform the data

in all three columns in a separate sheet from level to logarithm. In

doing this, simply use =log(say A1) where in cell A1 you have the first

observation of X1, and =log(say B1),…. Finally, simply cut and special

paste/value into the yellow columns within the template. Now you

have estimated a multiple regression model with both sides in a

non-linear form (i.e., log form).

Predictions using the estimated simple regression

If the estimated regression line fits well into the data, the model

can then be used for predictions. Using the above estimated simple

regression model, we can predict the price of an apartment a given

distance to downtown. This is known as the prediction interval or

P.I. Alternatively, we may predict the mean price of the apartment,

also known as the confidence interval or C.I., for the mean value.

In predicting intervals for the price of an apartment that is

six kilometres away from downtown, we simply set x=6 , and

substitute it back into the estimated equation:

You should pay attention to the scale of data. In this case, the

dependent variable is measured in $1000s. Therefore, the predicted

value for an apartment six kilometres from downtown is

39.56*1000=$39,560. This value is known as the point estimate of

the prediction and is not reliable, as we are not clear how close this

value is to the true value of the population.

A more reliable estimate can be constructed by setting up an

interval around the point estimate. This can be done in two ways.

We can predict the particular value of y for a given value of x, or we

can estimate the expected value (mean) of y, for a given value of x.
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For the particular value of y, we use the following formula for the

interval:

where the standard error, S.E., of the prediction is calculated

based on the following formula:

In this equation, x* is the particular value of the independent

variable, which in our case is 6, and s is the standard error of the

regression, calculated as:

From the Excel printout for the simple regression model, this

standard error is estimated as 7.02.

The sum of squares of the independent variable,

can also be calculated as shown in Figure 8.9.
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Figure 8.9

All these calculated values can be substituted back into the formula

for the S.E. of the prediction:

Now that the S.E. of the confidence interval has been calculated,

you can pick up the cut-off point from the t-table. Given the

degrees of freedom 12-2=10, the appropriate value from the t-table

is 2.23. You use this information to calculate the margin of error

as 6.52*2.23=14.54. Finally, construct the prediction interval for the

particular value of the price of an apartment located six kilometres

away from downtown as:
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This is a compact version of the prediction interval. For a more

general version of any confidence interval for any given confidence

level of alpha, we can write:

Intuitively, for say a .05 level of confidence, we are 95% confident

that the true parameter of the population will be within these two

lower and upper limits:

Based on our simple regression model that only includes distance

as a significant factor in predicting the price of an apartment, and

for a particular apartment six kilometres away from downtown, we

are 95% confident that the true price of an apartments in Nelson,

BC, is between $25,037 and $54,096, with a width of $29,059. One

should not be surprised there is such a wide width, given the fact

that the coefficient of determination of this model was only 50%,

and the fact that we have selected a distance far away from the

mean distance from downtown. We can always improve these

numbers by adding more explanatory variables to our simple

regression model. Alternatively, we can predict only for the numbers

as much as possible close to the downtown area.

Now we estimate the expected value (mean) of y for a given value

of x, the so-called prediction interval. The process of constructing

intervals is very similar to the previous case, except we use a new

formula for S.E. and of course we set up the intervals for the mean

value of the apartment price (i.e., =59.33).

You should be very careful to note the difference between this

formula and the one introduced earlier for S.E. for predicting the
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particular value of y for a given value of x. They

look very similar but this formula comes with an extra 1 inside the

radical!

The margin of error is then calculated as 2.179*3.82=8.32. We use

this to set up directly the lower and upper limits of the estimates:

Thus, for the average price of apartments located in Nelson, BC,

six kilometres away from downtown, we are 95% confident that this

average price will be between $18,200 and $60,920, with a width of

$47,720. Compared with the earlier width for C.I., it is obvious that

we are less confident in predicting the average price. The reason is

that the S.E. for the prediction is always larger than the S.E. for the

confidence interval.

This process can be repeated for all different levels of x, to

calculate the associated confidence and prediction intervals. By

doing this, we will have a range of lower and upper levels for both

P.I.s and C.I.s. All these numbers can be reproduced within the

interactive Excel template shown in Figure 8.8. If you use a

statistical software such as Minitab, you will directly plot a scatter

diagram with all P.I.s and C.I.s as well as the estimated linear

regression line all in one diagram. Figure 8.10 shows such a diagram

from Minitab for our example.
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Figure 8.10 Minitab Plot for C.I. and P.I.

Figure 8.10 indicates that a more reliable prediction should be made

as close as possible to the mean of our observations for x. In this

graph, the widths of both intervals are at the lowest levels closer to

the means of x and y.

You should be careful to note that Figure 8.10 provides the

predicted intervals only for the case of a simple regression model.

For the multiple regression model, you may use other statistical

software packages, such as SAS, SPSS, etc., to estimate both P.I.

and C.I. For instance, by selecting x1=3, and x2=300, and coding

these figures into Minitab, you will see the results as shown in

Figure 8.11. Alternatively, you may use the interactive Excel template

provided in Figure 8.8 to estimate your multiple regression model,

and to check for the significance of the estimated parameters. This

template can also be used to construct both the P.I. and C.I. for the

given values of x1=3, and x2=300 or any other values of your choice.

Furthermore, this template enables you to test if the estimated

multiple regression model is overall significant. When the estimated

multiple regression model is not overall significant, this template
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will not provide the P.I. and C.I. To practice this case, you may want

to change the yellow columns of x1 and x2 with different random

numbers that are not correlated with the dependent variable. Once

the estimated model is not overall significant, no prediction values

will be provided.

Figure 8.11

The 95% C.I., and P.I. figures in the brackets are the lower and upper

limits of the intervals given the specific values for distance and size

of apartments. The fitted value of the price of apartment, as well as

the standard error of this value, are also estimated.

We have just given you some rough ideas about how the basic

regression calculations are done. We left out other steps needed to

calculate more detailed results of regression without a computer

on purpose, for you will never compute a regression without a

computer (or a high-end calculator) in all of your working years.

However, by working with these interactive templates, you will have

a much better chance to play around with any data to see how the

outcomes can be altered, and to observe their implications for the

real-world business decision-making process.
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Correlation and covariance

The correlation between two variables is important in statistics,

and it is commonly reported. What is correlation? The meaning of

correlation can be discovered by looking closely at the word—it is

almost co-relation, and that is what it means: how two variables

are co-related. Correlation is also closely related to regression. The

covariance between two variables is also important in statistics,

but it is seldom reported. Its meaning can also be discovered by

looking closely at the word—it is co-variance, how two variables vary

together. Covariance plays a behind-the-scenes role in multivariate

statistics. Though you will not see covariance reported very often,

understanding it will help you understand multivariate statistics like

understanding variance helps you understand univariate statistics.

There are two ways to look at correlation. The first flows directly

from regression and the second from covariance. Since you just

learned about regression, it makes sense to start with that

approach.

Correlation is measured with a number between -1 and +1 called

the correlation coefficient. The population correlation coefficient

is usually written as the Greek rho, ρ, and the sample correlation

coefficient as r. If you have a linear regression equation with only

one explanatory variable, the sign of the correlation coefficient

shows whether the slope of the regression line is positive or

negative, while the absolute value of the coefficient shows how

close to the regression line the points lie. If ρ is +.95, then the

regression line has a positive slope and the points in the population

are very close to the regression line. If r is -.13 then the regression

line has a negative slope and the points in the sample are scattered

far from the regression line. If you square r, you will get R2, which is

higher if the points in the sample lie very close to the regression line

so that the sum of squares regression is close to the sum of squares

total.

The other approach to explaining correlation requires
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understanding covariance, how two variables vary together.

Because covariance is a multivariate statistic, it measures something

about a sample or population of observations where each

observation has two or more variables. Think of a population of

(x,y) pairs. First find the mean of the x’s and the mean of the y’s,

μx and μy. Then for each observation, find (x – μx)(y – μy). If the x

and the y in this observation are both far above their means, then

this number will be large and positive. If both are far below their

means, it will also be large and positive. If you found Σ(x – μx)(y –

μy), it would be large and positive if x and y move up and down

together, so that large x’s go with large y’s, small x’s go with small y’s,

and medium x’s go with medium y’s. However, if some of the large

x’s go with medium y’s, etc. then the sum will be smaller, though

probably still positive. A Σ(x – μx)(y – μy) implies that x’s above μx are

generally paired with y’s above μy, and those x’s below their mean

are generally paired with y’s below their mean. As you can see, the

sum is a measure of how x and y vary together. The more often

similar x’s are paired with similar y’s, the more x and y vary together

and the larger the sum and the covariance. The term for a single

observation, (x – μx)(y – μy), will be negative when the x and y are

on opposite sides of their means. If large x’s are usually paired with

small y’s, and vice versa, most of the terms will be negative and the

sum will be negative. If the largest x’s are paired with the smallest y’s

and the smallest x’s with the largest y’s, then many of the (x – μx)(y

– μy) will be large and negative and so will the sum. A population

with more members will have a larger sum simply because there

are more terms to be added together, so you divide the sum by the

number of observations to get the final measure, the covariance, or

cov:

The maximum for the covariance is the product of the standard

deviations of the x values and the y values, σxσy. While proving

that the maximum is exactly equal to the product of the standard

Chapter 8. Regression Basics | 153



deviations is complicated, you should be able to see that the more

spread out the points are, the greater the covariance can be. By now

you should understand that a larger standard deviation means that

the points are more spread out, so you should understand that a

larger σx or a larger σy will allow for a greater covariance.

Sample covariance is measured similarly, except the sum is

divided by n-1 so that sample covariance is an unbiased estimator of

population covariance:

Correlation simply compares the covariance to the standard

deviations of the two variables. Using the formula for population

correlation:

or

At its maximum, the absolute value of the covariance equals the

product of the standard deviations, so at its maximum, the absolute

value of r will be 1. Since the covariance can be negative or positive

while standard deviations are always positive, r can be either

negative or positive. Putting these two facts together, you can see

that r will be between -1 and +1. The sign depends on the sign

of the covariance and the absolute value depends on how close

the covariance is to its maximum. The covariance rises as the

relationship between x and y grows stronger, so a strong

relationship between x and y will result in r having a value close to

-1 or +1.
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Covariance, correlation, and regression

Now it is time to think about how all of this fits together and to

see how the two approaches to correlation are related. Start by

assuming that you have a population of (x, y) which covers a wide

range of y-values, but only a narrow range of x-values. This means

that σy is large while σx is small. Assume that you graph the (x, y)

points and find that they all lie in a narrow band stretched linearly

from bottom left to top right, so that the largest y’s are paired

with the largest x’s and the smallest y’s with the smallest x’s. This

means both that the covariance is large and a good regression line

that comes very close to almost all the points is easily drawn. The

correlation coefficient will also be very high (close to +1). An example

will show why all these happen together.

Imagine that the equation for the regression line is y=3+4x, μy

= 31, and μx = 7, and the two points farthest to the top right, (10,

43) and (12, 51), lie exactly on the regression line. These two points

together contribute ∑(x–μx)(y–μy) =(10-7)(43-31)+(12-7)(51-31)= 136 to

the numerator of the covariance. If we switched the x’s and y’s of

these two points, moving them off the regression line, so that they

became (10, 51) and (12, 43), μx, μy, σx, and σy would remain the same,

but these points would only contribute (10-7)(51-31)+(12-7)(43-31)=

120 to the numerator. As you can see, covariance is at its greatest,

given the distributions of the x’s and y’s, when the (x, y) points

lie on a straight line. Given that correlation, r, equals 1 when the

covariance is maximized, you can see that r=+1 when the points

lie exactly on a straight line (with a positive slope). The closer the

points lie to a straight line, the closer the covariance is to its

maximum, and the greater the correlation.

As the example in Figure 8.12 shows, the closer the points lie

to a straight line, the higher the correlation. Regression finds the

straight line that comes as close to the points as possible, so it

should not be surprising that correlation and regression are related.

One of the ways the goodness of fit of a regression line can be
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measured is by R2. For the simple two-variable case, R2 is simply the

correlation coefficient r, squared.

Figure 8.12 Plot of Initial Population

Correlation does not tell us anything about how steep or flat the

regression line is, though it does tell us if the slope is positive or

negative. If we took the initial population shown in Figure 8.12, and

stretched it both left and right horizontally so that each point’s

x-value changed, but its y-value stayed the same, σx would grow

while σy stayed the same. If you pulled equally to the right and

to the left, both μx and μy would stay the same. The covariance

would certainly grow since the (x–μx) that goes with each point

would be larger absolutely while the (y–μy)’s would stay the same.

The equation of the regression line would change, with the slope b

becoming smaller, but the correlation coefficient would be the same

because the points would be just as close to the regression line as

before. Once again, notice that correlation tells you how well the

line fits the points, but it does not tell you anything about the slope

other than if it is positive or negative. If the points are stretched out

horizontally, the slope changes but correlation does not. Also notice
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that though the covariance increases, correlation does not because

σx increases, causing the denominator in the equation for finding r

to increase as much as covariance, the numerator.

The regression line and covariance approaches to understanding

correlation are obviously related. If the points in the population lie

very close to the regression line, the covariance will be large in

absolute value since the x’s that are far from their mean will be

paired with y’s that are far from theirs. A positive regression slope

means that x and y rise and fall together, which also means that

the covariance will be positive. A negative regression slope means

that x and y move in opposite directions, which means a negative

covariance.

Summary

Simple linear regression allows researchers to estimate the

parameters — the intercept and slopes — of linear equations

connecting two or more variables. Knowing that a dependent

variable is functionally related to one or more independent or

explanatory variables, and having an estimate of the parameters

of that function, greatly improves the ability of a researcher to

predict the values the dependent variable will take under many

conditions. Being able to estimate the effect that one independent

variable has on the value of the dependent variable in isolation from

changes in other independent variables can be a powerful aid in

decision-making and policy design. Being able to test the existence

of individual effects of a number of independent variables helps

decision-makers, researchers, and policy-makers identify what

variables are most important. Regression is a very powerful

statistical tool in many ways.

The idea behind regression is simple: it is simply the equation of

the line that comes as close as possible to as many of the points as

possible. The mathematics of regression are not so simple, however.
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Instead of trying to learn the math, most researchers use computers

to find regression equations, so this chapter stressed reading

computer printouts rather than the mathematics of regression.

Two other topics, which are related to each other and to

regression, were also covered: correlation and covariance.

Something as powerful as linear regression must have limitations

and problems. There is a whole subject, econometrics, which deals

with identifying and overcoming the limitations and problems of

regression.
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Appendix: Interactive
Spreadsheets – Editable

The interactive spreadsheets used throughout this book have been

locked except for select cells that allow the student and reader

to practice specific concepts by entering, deleting, and then re-

entering numbers. It was necessary to do this in order to maintain

the integrity of the concepts and formulas being presented.

However, because this textbook is covered by an open license,

these spreadsheets must also be available in editable form.

Unlocked versions of all spreadsheets used in this textbook are

listed below by chapter and figure number, and downloadable in the

web version of this textbook.

Chapter 1

Figure 1.1 Interactive Excel Template of a Histogram

Figure 1.2 Interactive Excel Template to Calculate Variance and

Standard Deviation

Chapter 2

Figure 2.1 Interactive Excel Template for Cumulative Standard

Normal Distributions

Figure 2.2 Interactive Excel Template for Illustrating the Central

Limit Theorem

Figure 2.3 Interactive Excel Template of a t-Table
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Chapter 3

Figure 3.1 Interactive Excel Template for Determining the t-Values

Cut-off Point

Figure 3.2 Interactive Excel Template for Determining the χ2 Cut-

off Point

Chapter 4

Figure 4.1 Interactive Excel Template for Test of Hypothesis

Figure 4.2 Interactive Excel Template for Determining Chi-Square

Cut-off Point

Chapter 5

Figure 5.1 Interactive Excel Template for Determining Cut-off Point

of a t-Table

Figure 5.2 Interactive Excel Template for Paired t-Test

Chapter 6

Figure 6.1 Interactive Excel Template of an F-Table

Figure 6.2 Interactive Excel Template for F-Test

Figure 6.3 Interactive Excel Template for One-Way ANOVA
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Chapter 7

Figure 7.1 Interactive Excel Template for the Mann-Whitney U-Test

Chapter 8

Figure 8.4 Interactive Excel Template for Determining t-Value from

the t-Table

Figure 8.5 Interactive Excel Template of an F-Table

Figure 8.6 Interactive Excel Template for Simple Regression

Figure 8.8 Interactive Excel Template for Multiple Regression

Model
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