"

1.5 Solving Word Problems

Learning Objectives

  • Practice mindfulness with your attitude about word problems
  • Apply a general problem-solving strategy to solve word problems

 Approach Word Problems with a Positive Attitude

The world is full of word problems. How much money do I need to fill the car with gas? How much should I tip the server at a restaurant? How many socks should I pack for vacation? How big a turkey do I need to buy for Thanksgiving dinner, and what time do I need to put it in the oven? If my sister and I buy our mother a present, how much will each of us pay?

Now that we can solve equations, we are ready to apply our new skills to word problems. Do you know anyone who has had negative experiences in the past with word problems? Have you ever had thoughts like the student in the cartoon below?

A cartoon image of a girl with a sad expression writing on a piece of paper is shown. There are 5 thought bubbles. They read,
Negative thoughts about word problems can be barriers to success.

When we feel we have no control, and continue repeating negative thoughts, we set up barriers to success. We need to calm our fears and change our negative feelings.

Start with a fresh slate and begin to think positive thoughts like the student in the cartoon below. Read the positive thoughts and say them out loud.

A cartoon image of a girl with a confident expression holding some books is shown. There are 4 thought bubbles. They read,
When it comes to word problems, a positive attitude is a big step toward success.

If we take control and believe we can be successful, we will be able to master word problems.

Think of something that you can do now but couldn’t do three years ago. Whether it’s driving a car, snowboarding, cooking a gourmet meal, or speaking a new language, you have been able to learn and master a new skill. Word problems are no different. Even if you have struggled with word problems in the past, you have acquired many new math skills that will help you succeed now!

Use a Problem-Solving Strategy for Word Problems

In earlier chapters, you translated word phrases into algebraic expressions, using some basic mathematical vocabulary and symbols. Since then you’ve increased your math vocabulary as you learned about more algebraic procedures, and you’ve had more practice translating from words into algebra.

You have also translated word sentences into algebraic equations and solved some word problems. The word problems applied math to everyday situations. You had to restate the situation in one sentence, assign a variable, and then write an equation to solve. This method works as long as the situation is familiar to you and the math is not too complicated.

Now we’ll develop a strategy you can use to solve any word problem. This strategy will help you become successful with word problems. We’ll demonstrate the strategy as we solve the following problem.

Example

Pete bought a shirt on sale for $[latex]18[/latex], which is one-half the original price. What was the original price of the shirt?

Solution

Step 1. Read the problem. Make sure you understand all the words and ideas. You may need to read the problem two or more times. If there are words you don’t understand, look them up in a dictionary or on the Internet.

  • In this problem, do you understand what is being discussed? Do you understand every word?

Step 2. Identify what you are looking for. It’s hard to find something if you are not sure what it is! Read the problem again and look for words that tell you what you are looking for!

  • In this problem, the words “what was the original price of the shirt” tell you what you are looking for: the original price of the shirt.

Step 3. Name what you are looking for. Choose a variable to represent that quantity. You can use any letter for the variable, but it may help to choose one that helps you remember what it represents.

  • Let [latex]p=[/latex] the original price of the shirt

Step 4. Translate into an equation. It may help to first restate the problem in one sentence, with all the important information. Then translate the sentence into an equation.

The top line reads:
Step 5. Solve the equation using good algebra techniques. Even if you know the answer right away, using algebra will better prepare you to solve problems that do not have obvious answers.

Write the equation. [latex]18=\Large\frac{1}{2}p[/latex]
Multiply both sides by 2. [latex]\color{red}{2}\cdot18=\color{red}{2}\cdot\Large\frac{1}{2}\normalsize p[/latex]
Simplify. [latex]36=p[/latex]

Step 6. Check the answer in the problem and make sure it makes sense.

  • We found that [latex]p=36[/latex], which means the original price was [latex]\text{\$36}[/latex]. Does [latex]\text{\$36}[/latex] make sense in the problem? Yes, because [latex]18[/latex] is one-half of [latex]36[/latex], and the shirt was on sale at half the original price.

Step 7. Answer the question with a complete sentence.

  • The problem asked “What was the original price of the shirt?” The answer to the question is: “The original price of the shirt was [latex]\text{\$36}[/latex].”

If this were a homework exercise, our work might look like this:

The top reads,

Try it

Translate the following verbal statement into an algebraic equation and then solve:

  • Dion bought a bookcase on sale for $180, which was one-fourth of the original price.
  • What was the original price of the bookcase?
  • Use pp for your variable.

Answer

We list the steps we took to solve the previous example.

Problem-Solving Strategy

  1. Read the word problem. Make sure you understand all the words and ideas. You may need to read the problem two or more times. If there are words you don’t understand, look them up in a dictionary or on the interne
  2. Identify what you are looking for.
  3. Name what you are looking for. Choose a variable to represent that quantity.
  4. Translate into an equation. It may be helpful to first restate the problem in one sentence before translating.
  5. Solve the equation using good algebra techniques.
  6. Check the answer in the problem. Make sure it makes sense.
  7. Answer the question with a complete sentence.

    For a review of how to translate algebraic statements into words, watch the following video.[1]

    Examples

    Let’s use this approach with another example.

    Yash brought apples and bananas to a picnic. The number of apples was three more than twice the number of bananas. Yash brought [latex]11[/latex] apples to the picnic. How many bananas did he bring?

    Solution
    Step 1. Read the problem.
    Step 2. Identify what you are looking for. How many bananas did he bring?
    Step 3. Name what you are looking for.Choose a variable to represent the number of bananas. Let [latex]b=\text{number of bananas}[/latex]
    Step 4. Translate. Restate the problem in one sentence with all the important information.Translate into an equation. [latex]11\enspace\Rightarrow[/latex] The number of apples[latex]=\enspace\Rightarrow[/latex] was

    [latex]3\enspace\Rightarrow[/latex] three

    [latex]+\enspace\Rightarrow[/latex] more than

    [latex]2b\enspace\Rightarrow[/latex] twice the number of bananas

    Step 5. Solve the equation. [latex]11=2b+3[/latex]
    Subtract 3 from each side. [latex]11\color{red}{-3}=2b+3\color{red}{-3}[/latex]
    Simplify. [latex]8=2b[/latex]
    Divide each side by 2. [latex]\Large\frac{8}{\color{red}{2}}\normalsize =\Large\frac{2b}{\color{red}{2}}[/latex]
    Simplify. [latex]4=b[/latex]
    Step 6. Check: First, is our answer reasonable? Yes, bringing four bananas to a picnic seems reasonable. The problem says the number of apples was three more than twice the number of bananas. If there are four bananas, does that make eleven apples? Twice 4 bananas is 8. Three more than 8 is 11.
    Step 7. Answer the question. Yash brought 4 bananas to the picnic.

    Try it

    Translate the following scenario into an algebraic equation and then solve:

    • Use j for your variable to represent journals.
    • Pavati bought a total of 7 textbooks at the bookstore. She bought four more textbooks than journals.
    • How many journals did she buy?

    Answer

    In the next example, we will apply our Problem-Solving Strategy to applications of percent.

    Example

    Nga’s car insurance premium increased by [latex]\text{\$60}[/latex], which was [latex]\text{8%}[/latex] of the original cost. What was the original cost of the premium?

    Solution
    Step 1. Read the problem. Remember, if there are words you don’t understand, look them up.
    Step 2. Identify what you are looking for. the original cost of the premium
    Step 3. Name. Choose a variable to represent the original cost of premium. Let [latex]c=\text{the original cost}[/latex]
    Step 4. Translate. Restate as one sentence. Translate into an equation. .
    Step 5. Solve the equation. [latex]60=0.08c[/latex]
    Divide both sides by [latex]0.08[/latex]. [latex]\Large\frac{60}{\color{red}{0.08}}\normalsize =\Large\frac{0.08c}{\color{red}{0.08}}[/latex]
    Simplify. [latex]c=750[/latex]
    Step 6. Check: Is our answer reasonable? Yes, a [latex]\text{\$750}[/latex] premium on auto insurance is reasonable. Now let’s check our algebra. Is 8% of 750 equal to [latex]60[/latex]?[latex]750=c[/latex]

    [latex]0.08(750)=60[/latex]

    [latex]60=60\quad\checkmark[/latex]

    Step 7. Answer the question. The original cost of Nga’s premium was [latex]\text{\$750}[/latex].

    Try It

    Translate the following verbal statement into an algebraic equation and then solve:

    • Laila’s rent increased by 4%. The increase was $54.4.
    • What was the original amount of Laila’s rent?
    • Use r for your variable.
    Solution

    $1,360

    Chapter Attribution

    Apply a Problem-Solving Strategy to Basic Word Problems  in
    Mathematics for the Liberal Arts by Lumen Learning. CC BY License.


    1. Write Algebraic Expressions from Statements: Form ax+b and a(x+b) by James Sousa (Mathispower4u.com) for Lumen Learning. https://youtu.be/Hub7ku7UHT4.  CC BY License

    License

    Icon for the Creative Commons Attribution 4.0 International License

    1.5 Solving Word Problems Copyright © 2023 by Nova Scotia Community College is licensed under a Creative Commons Attribution 4.0 International License, except where otherwise noted.