# 1.6 Exercises

## Analysis Problems

1. For the circuit of Figure 1.6.1, determine πΌπ· and ππ·π. πΌπ·ππ = 40 mA, ππΊπ(πππ) = β4 V, ππ·π· = 26 V, ππΊπΊ = β2 V, ππΊ = 220 kΞ©, ππ· = 1.2 kΞ©.
2. For the circuit of Figure 1.6.1, determineΒ πΌπ· and ππ·π. πΌπ·ππ = 20 mA, ππΊπ(πππ) = β3 V, ππ·π· = 22 V, ππΊπΊ = β1 V, ππΊ = 390 kΞ©, ππ· = 1 kΞ©.
3. For the circuit of Figure 1.6.2, determine πΌπ·, ππΊ and ππ·. πΌπ·ππ = 24 mA, ππΊπ(πππ) = β6 V, ππ·π· = 36 V, ππΊ = 220 kΞ©, ππ = 2 kΞ©, ππ· = 1.8 kΞ©.
4. For the circuit of Figure 1.6.2, determine πΌπ·, ππ and ππ·π. πΌπ·ππ = 18 mA, ππΊπ(πππ) = β3 V, ππ·π· = 30 V, ππΊ = 270 kΞ©, ππ = 2.7 kΞ©, ππ· = 3.3 kΞ©.
5. For Figure 1.6.3, determine πΌπ·, ππΊ and ππ·. πΌπ·ππ = 16 mA, ππ·π· = 25 V, ππΊπ(πππ) = β3 V, πππ = β6 V, ππΊ = 560 kΞ©, ππ = 2 kΞ©, ππ· = 3.6 kΞ©.
6. For Figure 1.6.3, determine πΌπ·, and ππ·π. πΌπ·ππ = 16 mA, ππ·π· = 25 V, ππΊπ(πππ) = β3 V, πππ = β9 V, ππΊ = 680 kΞ©, ππ = 2 kΞ©, ππ· = 2.7 kΞ©.
7. For Figure 1.6.4, determine πΌπ·, ππΊ and ππ·. πΌπ·ππ = 16 mA, ππ·π· = 25 V, ππΊπ(πππ) = β3 V, ππΈπΈ = β9 V, ππΊ = 810 kΞ©, ππΈ = 2 kΞ©, ππ· = 2.7 kΞ©.
8. For the circuit of Figure 1.6.4, determine πΌπ· and ππ·π. πΌπ·ππ = 40 mA, ππΊπ(πππ) = β4 V, ππ·π· = 30 V, ππΈπΈ = β6 V, ππΊ = 750 kΞ©, ππΈ = 500 Ξ©, ππ· = 1.8 kΞ©.

## Design Problems

1. Using the circuit of Figure 1.6.2, determine a value for ππ to set πΌπ· to 4 mA. πΌπ·ππ = 10 mA, ππΊπ(πππ) = β2 V, ππ·π· = 20 V, ππΊ = 430 kΞ©, ππ· = 1.8 kΞ©.
2. Using the circuit of Figure 1.6.1, determine a value for ππΊπΊ to set πΌπ· to 2 mA. πΌπ·ππ = 10 mA, ππΊπ(πππ) = β4 V, ππ·π· = 28 V, ππΊ = 470 kΞ©, ππ· = 4.7 kΞ©.
3. Using the circuit of Figure 10.6.410.6.4, determine a value for ππΈ to set πΌπ· to 4 mA. πΌπ·ππ = 18 mA, ππΊπ(πππ) = β3 V, ππ·π· = 25 V, ππΈπΈ = β12 V, ππΊ = 330 kΞ©, ππ· = 2.2 kΞ©.
4. Using the circuit of Figure 1.6.4, determine values for ππΈ and ππ· to set πΌπ· to 5 mA and ππ· to 6 V. πΌπ·ππ = 20 mA, ππΊπ(πππ) = β4 V, ππ·π· = 32 V, ππΈπΈ = β10 V, ππΊ = 390 kΞ©.

## Challenge Problems

1. Following the derivation of Equation 10.4.2, derive Equation 10.4.4.
2. Β Using the circuit of Figure 1.6.3, determine values for ππ and πππ to set πΌπ· to 4 mA. πΌπ·ππ = 16 mA, ππΊπ(πππ) = β4 V, ππ·π· = 30 V, ππΊ = 680 kΞ©, ππ· = 2 kΞ©.

## Computer Simulation Problems

1. Β Perform a DC operating point simulation on the circuit of Problem 7 to verify the results. The J111 will be sufficient.
2. Perform a DC operating point simulation on the circuit of Problem 10 to verify the results. The J111 will be sufficient.

## Department of Marginal Utility

The graphs of Figure 10.4.13 represent three slices from this surface.

Looks cool, but…