2.8 Exercises
Analysis Problems
- For the amplifier of Figure 11.8.1 , determine πππ and π΄π£. πΌπ·ππ = 12 mA, ππΊπ(πππ) = β2 V, ππ·π· = 15 V, π πΊ = 220 k Ξ© , π π· = 2 k Ξ© , π πΏ = 3.3 k Ξ© , π π = 330 Ξ©.
- For the amplifier of Figure 11.8.1 , determine πππ and πππ’π‘. πππ = 50 mV, πΌπ·ππ = 15 mA, ππΊπ(πππ) = β3 V, ππ·π· = 20 V, π
πΊ = 270 k Ξ© , π
π· = 2 k Ξ© , π
πΏ = 6.8 k Ξ© , π
π = 270 Ξ©.
- For the amplifier of Figure 11.8.2 , determine πππ and πππ’π‘. πππ= 60 mV, πΌπ·ππ = 10 mA, ππΊπ(πππ) = β3 V, ππ·π· = 20 V, πππ = β6 V, π
πΊ = 270 k Ξ© , π
π· = 2 k Ξ© , π
πΏ = 4 k Ξ© , π
π = 1.8 k Ξ© , π
ππ = 200 Ξ© .
- For the amplifier of Figure 11.8.2 , determine πππ and π΄π£. πΌπ·ππ = 12 mA, ππΊπ(πππ) = β2 V, ππ·π· = 18 V, πππ = β4 V, π πΊ = 330 k Ξ© , π π· = 2.2 k Ξ© , π πΏ = 10 k Ξ© , π π = 3 k Ξ© , π ππ = 100 Ξ© .
- For the amplifier of Figure 11.8.3 , determine πππ and π΄π£. πΌπ·ππ = 12 mA, ππΊπ(πππ) = β2 V, ππ·π· = 18 V, ππΈπΈ = β4 V, π
πΊ = 390 k Ξ© , π
π· = 2.2 k Ξ© , π
πΈ = 1 k Ξ© , π
πΏ = 20 k Ξ©.
- For the amplifier of Figure 11.8.3 , determine πππ and πππ’π‘. πππ = 70 mV, πΌπ·ππ = 12 mA, ππΊπ(πππ) = β2 V, ππ·π· = 18 V, ππΈπΈ = β4 V, π πΊ = 390 k Ξ© , π π· = 2.2 k Ξ© , π πΏ = 20 k Ξ©.
- For the circuit of Figure 11.8.4 , determine πππ and π΄π£. πΌπ·ππ = 12 mA, ππΊπ(πππ) = β2 V, ππ·π· = 10 V, π
πΊ = 220 k Ξ© , π
πΏ = 3.3 k Ξ© , π
π = 330 Ξ© .
- For the circuit of Figure 11.8.4 , determine πππ and πππ’π‘. πππ = 200 mV, πΌπ·ππ = 15 mA, ππΊπ(πππ) = β3 V, ππ·π· = 12 V, π πΊ = 270 k Ξ© , π πΏ = 1.8 k Ξ© , π π = 270 Ξ© .
- For the circuit of Figure 11.8.5 , determine πππ and πππ’π‘. πππ = 100 mV, πΌπ·ππ = 10 mA, ππΊπ(πππ) = β3 V, ππ·π· = 15 V, πππ = β6 V, π
πΊ = 470 k Ξ© , π
πΏ = 4 k Ξ© , π
π = 1.8 k Ξ©.
- For the circuit of Figure 11.8.5 , determine πππ and π΄π£. πΌπ·ππ = 18 mA, ππΊπ(πππ) = β2 V, ππ·π· = 14 V, πππ = β6 V, π πΊ = 360 k Ξ© , π πΏ = 10 k Ξ© , π π = 1 k Ξ© .
- For the circuit of Figure 11.8.6 , determine πππ’π‘. πππ = 100 mV, ππ·π(ππ) = 50 Ξ© , ππ·π(πππ) = 1 M Ξ© , ππΊπ(πππ) = β3 V, ππΆ = β6 V, π πΊ = 270 k Ξ© , π π· = 6.8 k Ξ© .
- For the circuit of Figure 11.8.6, determine πππ’π‘. πππ = 100 mV, ππ·π(ππ) = 75 Ξ© , ππ·π(πππ) = 750 k Ξ© , ππΊπ(πππ) = β3 V, ππΆ = 0 V, π
πΊ = 180 k Ξ© , π
π· = 5.1 k Ξ© .
Design Challenge Problems
- Following the circuit of Figure 11.8.2 , design an amplifier with a gain of at least 4 and an input impedance of at least 300 k Ξ©. π πΏ = 10 k Ξ© . The JFET has the following parameters: ππΊπ(πππ) = β2 V, πΌπ·ππ = 15 mA. Try to use standard resistor values.
- Using the circuit of Figure 11.8.4 , design a follower with a gain of at least 0.7 and an input impedance of at least 500 k Ξ©. π πΏ = 1 k Ξ© . The JFET has the following parameters: ππΊπ(πππ) = β3 V, πΌπ·ππ = 20 mA. Try to use standard resistor values.
Computer Simulation Problems
- Utili πππ g manufacturer’s data sheets, find devices with the following specifications (typical) and verify them using the measurement techniques presented in the prior chapter. Device 1: ππΊπ(πππ) = β2 V, πΌπ·ππ = 15 mA. Device 2: ππΊπ(πππ) = β3 V, πΌπ·ππ = 20 mA.
- Using the device model from the preceding problem, verify the design of Problem 13.
- Using the device model from Problem 15, verify the design of Problem 14.