3.8 Exercises
Analysis Problems
- For the circuit of Figure 3.8.1 , determine πΌπ·, ππΊ and ππ·. πΌπ·ππ = 20 mA, ππΊπ(πππ) = β6 V, ππ·π· = 15 V, π πΊ = 470 k Ξ© , π π = 1.2 k Ξ© , π π· = 1.8 k Ξ© .
- For the circuit of Figure 3.8.1 , determine πΌπ·, ππ·π and ππ·. πΌπ·ππ = 20 mA, ππΊπ(πππ) = β5 V, ππ·π· = 30 V, π
πΊ = 560 k Ξ© , π
π = 420 Ξ© , π
π· = 1.5 k Ξ© .
- For Figure 3.8.2 , determine πΌπ· , ππΊ and ππ· . πΌπ·ππ = 15 mA, ππ·π· = 25 V, ππΊπ(πππ) = β3 V, πππ = β6 V, π πΊ = 820 k Ξ© , π π = 2 k Ξ© , π π· = 3.6 k Ξ© .
- For the circuit of Figure 3.8.2 , determine πΌπ· , ππ·π and ππ· . πΌπ·ππ = 18 mA, ππΊπ(πππ) = β3 V, ππ·π· = 30 V, πππ = β9 V, π πΊ = 910 k Ξ© , π π = 1.2 k Ξ© , π π· = 2.7 k Ξ© .
- For the circuit of Figure 3.8.3 , determine πΌπ· , ππΊ and ππ· . πΌπ·ππ = 12 mA, ππΊπ(πππ) = β4 V, ππ·π· = 35 V, π
πΊ = 680 k Ξ© , π
π· = 1.8 k Ξ© .
- For the circuit of Figure 3.8.3 , determine πΌπ· , ππ·π and ππ· . πΌπ·ππ = 8 mA, ππΊπ(πππ) = β2 V, ππ·π· = 30 V, π
πΊ = 750 k Ξ© , π
π· = 2.7 k Ξ© .
- For the circuit of Figure 3.8.4 , determine πΌπ· , ππΊ and ππ· . πΌπ·ππ = 8 mA, ππΊπ(πππ) = β4 V, ππ·π· = 30 V, π 1 = 2.7 M Ξ© , π 2 = 110 k Ξ© , π π· = 470 Ξ© .
- For the circuit of Figure 3.8.4 , determine πΌπ· , ππ·π and ππ· . πΌπ·ππ = 12 mA, ππΊπ(πππ) = β6 V, ππ·π· = 20 V, π 1 = 2 M Ξ© , π 2 = 100 k Ξ© , π π· = 680 Ξ© .
- For the circuit of Figure 3.8.5 , determine πΌπ· , ππΊ and ππ· . πΌπ·(ππ) = 8 mA, ππΊπ(ππ) = 5 V, ππΊπ(π‘β) = 3 V, ππ·π· = 30 V, π 1 = 2 M Ξ© , π 2 = 330 k Ξ© , π π· = 1.2 k Ξ© .
- For the circuit of Figure 3.8.5 , determine πΌπ· , ππ·π and ππ· . πΌπ·(ππ) = 12 mA, ππΊπ(ππ) = 6 V, ππΊπ(π‘β) = 2.5 V, ππ·π· = 25 V, π
1 = 1.5 M Ξ© , π
2 = 470 k Ξ© , π
π· = 680 Ξ© .
- For the circuit of Figure 3.8.6 , determine πΌπ· , ππΊ and ππ· . πΌπ·ππ = 12 mA, ππΊπ(πππ) = 2 V, ππ·π· = β25 V, π πΊ = 470 k Ξ© , π π = 800 Ξ© , π π· = 1.8 k Ξ© .
- For the circuit of Figure 3.8.6 , determine πΌπ· and ππ· . πΌπ·ππ = 10 mA, ππΊπ(πππ) = 2 V, ππ·π· = β20 V, π
πΊ = 560 k Ξ© , π
π = 680 Ξ© , π
π· = 1.5 k Ξ© .
- For the circuit of Figure 3.8.7 , determine πΌπ·, ππΊ and ππ· . πΌπ·ππ = 14 mA, ππΊπ(πππ) = 3 V, ππ·π· = β25 V, πππ = 6 V, π
πΊ = 780 k Ξ© , π
π = 2 k Ξ© , π
π· = 3.3 k Ξ© .
- For the circuit of Figure 3.8.7 , determine πΌπ· and ππ· . πΌπ·ππ = 16 mA, ππΊπ(πππ) = 3.5 V, ππ·π· = β20 V, πππ = 7 V, π πΊ = 1 M Ξ© , π π = 1.5 k Ξ© , π π· = 2.2 k Ξ© .
- For the circuit of Figure 3.8.8 , determine πΌπ· and ππ· . πΌπ·ππ = 11 mA, ππΊπ(πππ) = 2 V, ππ·π· = β24 V, π πΊ = 750 k Ξ© , π π· = 1.2 k Ξ© .
- For the circuit of Figure 3.8.8 , determine πΌπ· and ππ· . πΌπ·ππ = 9 mA, ππΊπ(πππ) = 3 V, ππ·π· = β18 V, π
πΊ = 430 k Ξ© , π
π· = 910 Ξ© .
Design Problems
- Using the circuit of Figure 3.8.1 , determine a value for π
π to set πΌπ· to 4 mA. πΌπ·ππ = 10 mA, ππΊπ(πππ) = β2 V, ππ·π· = 18 V, π
πΊ = 470 k Ξ© , π
π· = 1.5 k Ξ© .
- For the circuit of Figure 3.8.9 , determine π π· and π πΊ to set πΌπ· = 10 mA. πΌπ·(ππ) = 15 mA, ππΊπ(ππ) = 6 V, ππΊπ(π‘β) = 2 V, ππ·π· = 20 V.
- For the circuit of Figure 3.8.9 , determine π π· and π πΊ to set πΌπ· = 15 mA. πΌπ·(ππ) = 10 mA, ππΊπ(ππ) = 5 V, ππΊπ(π‘β) = 2 V, ππ·π· = 25 V.
Challenge Problems
- Using the circuit of Figure 3.8.2 , determine values for π π· , π π and πππ to set πΌπ· to 5 mA and ππ· to 20 V. πΌπ·ππ = 15 mA, ππΊπ(πππ) = β3 V, ππ·π· = 30 V, π πΊ = 560 k Ξ© .
- Using the circuit of Figure 3.8.10 , determine values for π
π· to set ππ· to 15 V. πΌπ·ππ = 10 mA, ππΊπ(πππ) = 3 V, πππ = 25 V, π
πΊ = 680 k Ξ© .