3.8 Exercises

Analysis Problems

  1. For the circuit of Figure 3.8.1 , determine 𝐼𝐷, 𝑉𝐺 and 𝑉𝐷. 𝐼𝐷𝑆𝑆 = 20 mA, 𝑉𝐺𝑆(π‘œπ‘“π‘“) = βˆ’6 V, 𝑉𝐷𝐷 = 15 V, 𝑅𝐺 = 470 k Ξ© , 𝑅𝑆 = 1.2 k Ξ© , 𝑅𝐷 = 1.8 k Ξ© .
  2. For the circuit of Figure 3.8.1 , determine 𝐼𝐷, 𝑉𝐷𝑆 and 𝑉𝐷. 𝐼𝐷𝑆𝑆 = 20 mA, 𝑉𝐺𝑆(π‘œπ‘“π‘“) = βˆ’5 V, 𝑉𝐷𝐷 = 30 V, 𝑅𝐺 = 560 k Ξ© , 𝑅𝑆 = 420 Ξ© , 𝑅𝐷 = 1.5 k Ξ© .
    Figure 3.8.1
  3. For Figure 3.8.2 , determine 𝐼𝐷 , 𝑉𝐺 and 𝑉𝐷 . 𝐼𝐷𝑆𝑆 = 15 mA, 𝑉𝐷𝐷 = 25 V, 𝑉𝐺𝑆(π‘œπ‘“π‘“) = βˆ’3 V, 𝑉𝑆𝑆 = βˆ’6 V, 𝑅𝐺 = 820 k Ξ© , 𝑅𝑆 = 2 k Ξ© , 𝑅𝐷 = 3.6 k Ξ© .
  4. For the circuit of Figure 3.8.2 , determine 𝐼𝐷 , 𝑉𝐷𝑆 and 𝑉𝐷 . 𝐼𝐷𝑆𝑆 = 18 mA, 𝑉𝐺𝑆(π‘œπ‘“π‘“) = βˆ’3 V, 𝑉𝐷𝐷 = 30 V, 𝑉𝑆𝑆 = βˆ’9 V, 𝑅𝐺 = 910 k Ξ© , 𝑅𝑆 = 1.2 k Ξ© , 𝑅𝐷 = 2.7 k Ξ© .
  5. For the circuit of Figure 3.8.3 , determine 𝐼𝐷 , 𝑉𝐺 and 𝑉𝐷 . 𝐼𝐷𝑆𝑆 = 12 mA, 𝑉𝐺𝑆(π‘œπ‘“π‘“) = βˆ’4 V, 𝑉𝐷𝐷 = 35 V, 𝑅𝐺 = 680 k Ξ© , 𝑅𝐷 = 1.8 k Ξ© .
    Figure 3.8.2
  6. For the circuit of Figure 3.8.3 , determine 𝐼𝐷 , 𝑉𝐷𝑆 and 𝑉𝐷 . 𝐼𝐷𝑆𝑆 = 8 mA, 𝑉𝐺𝑆(π‘œπ‘“π‘“) = βˆ’2 V, 𝑉𝐷𝐷 = 30 V, 𝑅𝐺 = 750 k Ξ© , 𝑅𝐷 = 2.7 k Ξ© .
    Figure 3.8.3
  7. For the circuit of Figure 3.8.4 , determine 𝐼𝐷 , 𝑉𝐺 and 𝑉𝐷 . 𝐼𝐷𝑆𝑆 = 8 mA, 𝑉𝐺𝑆(π‘œπ‘“π‘“) = βˆ’4 V, 𝑉𝐷𝐷 = 30 V, 𝑅1 = 2.7 M Ξ© , 𝑅2 = 110 k Ξ© , 𝑅𝐷 = 470 Ξ© .
  8. For the circuit of Figure 3.8.4 , determine 𝐼𝐷 , 𝑉𝐷𝑆 and 𝑉𝐷 . 𝐼𝐷𝑆𝑆 = 12 mA, 𝑉𝐺𝑆(π‘œπ‘“π‘“) = βˆ’6 V, 𝑉𝐷𝐷 = 20 V, 𝑅1 = 2 M Ξ© , 𝑅2 = 100 k Ξ© , 𝑅𝐷 = 680 Ξ© .
  9. For the circuit of Figure 3.8.5 , determine 𝐼𝐷 , 𝑉𝐺 and 𝑉𝐷 . 𝐼𝐷(π‘œπ‘›) = 8 mA, 𝑉𝐺𝑆(π‘œπ‘›) = 5 V, 𝑉𝐺𝑆(π‘‘β„Ž) = 3 V, 𝑉𝐷𝐷 = 30 V, 𝑅1 = 2 M Ξ© , 𝑅2 = 330 k Ξ© , 𝑅𝐷 = 1.2 k Ξ© .
  10. For the circuit of Figure 3.8.5 , determine 𝐼𝐷 , 𝑉𝐷𝑆 and 𝑉𝐷 . 𝐼𝐷(π‘œπ‘›) = 12 mA, 𝑉𝐺𝑆(π‘œπ‘›) = 6 V, 𝑉𝐺𝑆(π‘‘β„Ž) = 2.5 V, 𝑉𝐷𝐷 = 25 V, 𝑅1 = 1.5 M Ξ© , 𝑅2 = 470 k Ξ© , 𝑅𝐷 = 680 Ξ© .
    Figure 3.8.4
    Figure 3.8.5
  11. For the circuit of Figure 3.8.6 , determine 𝐼𝐷 , 𝑉𝐺 and 𝑉𝐷 . 𝐼𝐷𝑆𝑆 = 12 mA, 𝑉𝐺𝑆(π‘œπ‘“π‘“) = 2 V, 𝑉𝐷𝐷 = βˆ’25 V, 𝑅𝐺 = 470 k Ξ© , 𝑅𝑆 = 800 Ξ© , 𝑅𝐷 = 1.8 k Ξ© .
  12. For the circuit of Figure 3.8.6 , determine 𝐼𝐷 and 𝑉𝐷 . 𝐼𝐷𝑆𝑆 = 10 mA, 𝑉𝐺𝑆(π‘œπ‘“π‘“) = 2 V, 𝑉𝐷𝐷 = βˆ’20 V, 𝑅𝐺 = 560 k Ξ© , 𝑅𝑆 = 680 Ξ© , 𝑅𝐷 = 1.5 k Ξ© .
    Figure 3.8.6
  13. For the circuit of Figure 3.8.7 , determine 𝐼𝐷, 𝑉𝐺 and 𝑉𝐷 . 𝐼𝐷𝑆𝑆 = 14 mA, 𝑉𝐺𝑆(π‘œπ‘“π‘“) = 3 V, 𝑉𝐷𝐷 = βˆ’25 V, 𝑉𝑆𝑆 = 6 V, 𝑅𝐺 = 780 k Ξ© , 𝑅𝑆 = 2 k Ξ© , 𝑅𝐷 = 3.3 k Ξ© .
    Figure 3.8.7
  14. For the circuit of Figure 3.8.7 , determine 𝐼𝐷 and 𝑉𝐷 . 𝐼𝐷𝑆𝑆 = 16 mA, 𝑉𝐺𝑆(π‘œπ‘“π‘“) = 3.5 V, 𝑉𝐷𝐷 = βˆ’20 V, 𝑉𝑆𝑆 = 7 V, 𝑅𝐺 = 1 M Ξ© , 𝑅𝑆 = 1.5 k Ξ© , 𝑅𝐷 = 2.2 k Ξ© .
  15. For the circuit of Figure 3.8.8 , determine 𝐼𝐷 and 𝑉𝐷 . 𝐼𝐷𝑆𝑆 = 11 mA, 𝑉𝐺𝑆(π‘œπ‘“π‘“) = 2 V, 𝑉𝐷𝐷 = βˆ’24 V, 𝑅𝐺 = 750 k Ξ© , 𝑅𝐷 = 1.2 k Ξ© .
  16. For the circuit of Figure 3.8.8 , determine 𝐼𝐷 and 𝑉𝐷 . 𝐼𝐷𝑆𝑆 = 9 mA, 𝑉𝐺𝑆(π‘œπ‘“π‘“) = 3 V, 𝑉𝐷𝐷 = βˆ’18 V, 𝑅𝐺 = 430 k Ξ© , 𝑅𝐷 = 910 Ξ© .
    Figure 3.8.8

Design Problems

  1. Using the circuit of Figure 3.8.1 , determine a value for 𝑅𝑆 to set 𝐼𝐷 to 4 mA. 𝐼𝐷𝑆𝑆 = 10 mA, 𝑉𝐺𝑆(π‘œπ‘“π‘“) = βˆ’2 V, 𝑉𝐷𝐷 = 18 V, 𝑅𝐺 = 470 k Ξ© , 𝑅𝐷 = 1.5 k Ξ© .
    Figure 3.8.9
  2. For the circuit of Figure 3.8.9 , determine 𝑅𝐷 and 𝑅𝐺 to set 𝐼𝐷 = 10 mA. 𝐼𝐷(π‘œπ‘›) = 15 mA, 𝑉𝐺𝑆(π‘œπ‘›) = 6 V, 𝑉𝐺𝑆(π‘‘β„Ž) = 2 V, 𝑉𝐷𝐷 = 20 V.
  3. For the circuit of Figure 3.8.9 , determine 𝑅𝐷 and 𝑅𝐺 to set 𝐼𝐷 = 15 mA. 𝐼𝐷(π‘œπ‘›) = 10 mA, 𝑉𝐺𝑆(π‘œπ‘›) = 5 V, 𝑉𝐺𝑆(π‘‘β„Ž) = 2 V, 𝑉𝐷𝐷 = 25 V.

Challenge Problems

  1. Using the circuit of Figure 3.8.2 , determine values for 𝑅𝐷 , 𝑅𝑆 and 𝑉𝑆𝑆 to set 𝐼𝐷 to 5 mA and 𝑉𝐷 to 20 V. 𝐼𝐷𝑆𝑆 = 15 mA, 𝑉𝐺𝑆(π‘œπ‘“π‘“) = βˆ’3 V, 𝑉𝐷𝐷 = 30 V, 𝑅𝐺 = 560 k Ξ© .
  2. Using the circuit of Figure 3.8.10 , determine values for 𝑅𝐷 to set 𝑉𝐷 to 15 V. 𝐼𝐷𝑆𝑆 = 10 mA, 𝑉𝐺𝑆(π‘œπ‘“π‘“) = 3 V, 𝑉𝑆𝑆 = 25 V, 𝑅𝐺 = 680 k Ξ© .
    Figure 3.8.10
    Figure 3.8.11 : Comic from xkcd.com

License

Icon for the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Avionics II Copyright © 2023 by NSCC is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.

Share This Book